| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemk5.b |
|
| 2 |
|
cdlemk5.l |
|
| 3 |
|
cdlemk5.j |
|
| 4 |
|
cdlemk5.m |
|
| 5 |
|
cdlemk5.a |
|
| 6 |
|
cdlemk5.h |
|
| 7 |
|
cdlemk5.t |
|
| 8 |
|
cdlemk5.r |
|
| 9 |
|
cdlemk5.z |
|
| 10 |
|
cdlemk5.y |
|
| 11 |
|
cdlemk5.x |
|
| 12 |
|
simp1l |
|
| 13 |
|
simp211 |
|
| 14 |
|
simp212 |
|
| 15 |
13 14
|
jca |
|
| 16 |
|
simp32 |
|
| 17 |
|
simp213 |
|
| 18 |
|
simp23 |
|
| 19 |
|
simp1r |
|
| 20 |
18 19
|
jca |
|
| 21 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk35s-id |
|
| 22 |
12 15 16 17 20 21
|
syl131anc |
|
| 23 |
1 6 7
|
ltrn1o |
|
| 24 |
12 22 23
|
syl2anc |
|
| 25 |
|
f1ococnv2 |
|
| 26 |
24 25
|
syl |
|
| 27 |
26
|
coeq2d |
|
| 28 |
|
simp22 |
|
| 29 |
|
simp31l |
|
| 30 |
6 7
|
ltrnco |
|
| 31 |
12 28 29 30
|
syl3anc |
|
| 32 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk35s-id |
|
| 33 |
12 15 31 17 20 32
|
syl131anc |
|
| 34 |
1 6 7
|
ltrn1o |
|
| 35 |
12 33 34
|
syl2anc |
|
| 36 |
|
f1of |
|
| 37 |
|
fcoi1 |
|
| 38 |
35 36 37
|
3syl |
|
| 39 |
27 38
|
eqtr2d |
|
| 40 |
|
coass |
|
| 41 |
39 40
|
eqtr4di |
|
| 42 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk54 |
|
| 43 |
42
|
coeq1d |
|
| 44 |
|
coass |
|
| 45 |
26
|
coeq2d |
|
| 46 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk35s-id |
|
| 47 |
12 15 28 17 20 46
|
syl131anc |
|
| 48 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk35s-id |
|
| 49 |
12 15 29 17 20 48
|
syl131anc |
|
| 50 |
6 7
|
ltrnco |
|
| 51 |
12 47 49 50
|
syl3anc |
|
| 52 |
1 6 7
|
ltrn1o |
|
| 53 |
12 51 52
|
syl2anc |
|
| 54 |
|
f1of |
|
| 55 |
|
fcoi1 |
|
| 56 |
53 54 55
|
3syl |
|
| 57 |
45 56
|
eqtrd |
|
| 58 |
44 57
|
eqtrid |
|
| 59 |
43 58
|
eqtrd |
|
| 60 |
41 59
|
eqtrd |
|