Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk5.b |
|
2 |
|
cdlemk5.l |
|
3 |
|
cdlemk5.j |
|
4 |
|
cdlemk5.m |
|
5 |
|
cdlemk5.a |
|
6 |
|
cdlemk5.h |
|
7 |
|
cdlemk5.t |
|
8 |
|
cdlemk5.r |
|
9 |
|
cdlemk5.z |
|
10 |
|
cdlemk5.y |
|
11 |
|
cdlemk5.x |
|
12 |
|
simp1l |
|
13 |
|
simp211 |
|
14 |
|
simp212 |
|
15 |
13 14
|
jca |
|
16 |
|
simp32 |
|
17 |
|
simp213 |
|
18 |
|
simp23 |
|
19 |
|
simp1r |
|
20 |
18 19
|
jca |
|
21 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk35s-id |
|
22 |
12 15 16 17 20 21
|
syl131anc |
|
23 |
1 6 7
|
ltrn1o |
|
24 |
12 22 23
|
syl2anc |
|
25 |
|
f1ococnv2 |
|
26 |
24 25
|
syl |
|
27 |
26
|
coeq2d |
|
28 |
|
simp22 |
|
29 |
|
simp31l |
|
30 |
6 7
|
ltrnco |
|
31 |
12 28 29 30
|
syl3anc |
|
32 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk35s-id |
|
33 |
12 15 31 17 20 32
|
syl131anc |
|
34 |
1 6 7
|
ltrn1o |
|
35 |
12 33 34
|
syl2anc |
|
36 |
|
f1of |
|
37 |
|
fcoi1 |
|
38 |
35 36 37
|
3syl |
|
39 |
27 38
|
eqtr2d |
|
40 |
|
coass |
|
41 |
39 40
|
eqtr4di |
|
42 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk54 |
|
43 |
42
|
coeq1d |
|
44 |
|
coass |
|
45 |
26
|
coeq2d |
|
46 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk35s-id |
|
47 |
12 15 28 17 20 46
|
syl131anc |
|
48 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk35s-id |
|
49 |
12 15 29 17 20 48
|
syl131anc |
|
50 |
6 7
|
ltrnco |
|
51 |
12 47 49 50
|
syl3anc |
|
52 |
1 6 7
|
ltrn1o |
|
53 |
12 51 52
|
syl2anc |
|
54 |
|
f1of |
|
55 |
|
fcoi1 |
|
56 |
53 54 55
|
3syl |
|
57 |
45 56
|
eqtrd |
|
58 |
44 57
|
eqtrid |
|
59 |
43 58
|
eqtrd |
|
60 |
41 59
|
eqtrd |
|