Metamath Proof Explorer


Theorem ltrnco

Description: The composition of two translations is a translation. Part of proof of Lemma G of Crawley p. 116, line 15 on p. 117. (Contributed by NM, 31-May-2013)

Ref Expression
Hypotheses ltrnco.h H = LHyp K
ltrnco.t T = LTrn K W
Assertion ltrnco K HL W H F T G T F G T

Proof

Step Hyp Ref Expression
1 ltrnco.h H = LHyp K
2 ltrnco.t T = LTrn K W
3 simp1 K HL W H F T G T K HL W H
4 eqid LDil K W = LDil K W
5 1 4 2 ltrnldil K HL W H F T F LDil K W
6 5 3adant3 K HL W H F T G T F LDil K W
7 1 4 2 ltrnldil K HL W H G T G LDil K W
8 7 3adant2 K HL W H F T G T G LDil K W
9 1 4 ldilco K HL W H F LDil K W G LDil K W F G LDil K W
10 3 6 8 9 syl3anc K HL W H F T G T F G LDil K W
11 simp11 K HL W H F T G T p Atoms K q Atoms K ¬ p K W ¬ q K W K HL W H
12 simp2l K HL W H F T G T p Atoms K q Atoms K ¬ p K W ¬ q K W p Atoms K
13 simp3l K HL W H F T G T p Atoms K q Atoms K ¬ p K W ¬ q K W ¬ p K W
14 12 13 jca K HL W H F T G T p Atoms K q Atoms K ¬ p K W ¬ q K W p Atoms K ¬ p K W
15 simp2r K HL W H F T G T p Atoms K q Atoms K ¬ p K W ¬ q K W q Atoms K
16 simp3r K HL W H F T G T p Atoms K q Atoms K ¬ p K W ¬ q K W ¬ q K W
17 15 16 jca K HL W H F T G T p Atoms K q Atoms K ¬ p K W ¬ q K W q Atoms K ¬ q K W
18 simp12 K HL W H F T G T p Atoms K q Atoms K ¬ p K W ¬ q K W F T
19 simp13 K HL W H F T G T p Atoms K q Atoms K ¬ p K W ¬ q K W G T
20 eqid K = K
21 eqid join K = join K
22 eqid meet K = meet K
23 eqid Atoms K = Atoms K
24 20 21 22 23 1 2 cdlemg41 K HL W H p Atoms K ¬ p K W q Atoms K ¬ q K W F T G T p join K F G p meet K W = q join K F G q meet K W
25 11 14 17 18 19 24 syl122anc K HL W H F T G T p Atoms K q Atoms K ¬ p K W ¬ q K W p join K F G p meet K W = q join K F G q meet K W
26 25 3exp K HL W H F T G T p Atoms K q Atoms K ¬ p K W ¬ q K W p join K F G p meet K W = q join K F G q meet K W
27 26 ralrimivv K HL W H F T G T p Atoms K q Atoms K ¬ p K W ¬ q K W p join K F G p meet K W = q join K F G q meet K W
28 20 21 22 23 1 4 2 isltrn K HL W H F G T F G LDil K W p Atoms K q Atoms K ¬ p K W ¬ q K W p join K F G p meet K W = q join K F G q meet K W
29 28 3ad2ant1 K HL W H F T G T F G T F G LDil K W p Atoms K q Atoms K ¬ p K W ¬ q K W p join K F G p meet K W = q join K F G q meet K W
30 10 27 29 mpbir2and K HL W H F T G T F G T