Metamath Proof Explorer


Theorem trlcocnv

Description: Swap the arguments of the trace of a composition with converse. (Contributed by NM, 1-Jul-2013)

Ref Expression
Hypotheses trlcocnv.h H = LHyp K
trlcocnv.t T = LTrn K W
trlcocnv.r R = trL K W
Assertion trlcocnv K HL W H F T G T R F G -1 = R G F -1

Proof

Step Hyp Ref Expression
1 trlcocnv.h H = LHyp K
2 trlcocnv.t T = LTrn K W
3 trlcocnv.r R = trL K W
4 simp1 K HL W H F T G T K HL W H
5 1 2 ltrncnv K HL W H G T G -1 T
6 5 3adant2 K HL W H F T G T G -1 T
7 1 2 ltrnco K HL W H F T G -1 T F G -1 T
8 6 7 syld3an3 K HL W H F T G T F G -1 T
9 1 2 3 trlcnv K HL W H F G -1 T R F G -1 -1 = R F G -1
10 4 8 9 syl2anc K HL W H F T G T R F G -1 -1 = R F G -1
11 cnvco F G -1 -1 = G -1 -1 F -1
12 cocnvcnv1 G -1 -1 F -1 = G F -1
13 11 12 eqtri F G -1 -1 = G F -1
14 13 fveq2i R F G -1 -1 = R G F -1
15 10 14 eqtr3di K HL W H F T G T R F G -1 = R G F -1