| Step |
Hyp |
Ref |
Expression |
| 1 |
|
trlcocnv.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
trlcocnv.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
trlcocnv.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 5 |
1 2
|
ltrncnv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ) → ◡ 𝐺 ∈ 𝑇 ) |
| 6 |
5
|
3adant2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ◡ 𝐺 ∈ 𝑇 ) |
| 7 |
1 2
|
ltrnco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ◡ 𝐺 ∈ 𝑇 ) → ( 𝐹 ∘ ◡ 𝐺 ) ∈ 𝑇 ) |
| 8 |
6 7
|
syld3an3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( 𝐹 ∘ ◡ 𝐺 ) ∈ 𝑇 ) |
| 9 |
1 2 3
|
trlcnv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∘ ◡ 𝐺 ) ∈ 𝑇 ) → ( 𝑅 ‘ ◡ ( 𝐹 ∘ ◡ 𝐺 ) ) = ( 𝑅 ‘ ( 𝐹 ∘ ◡ 𝐺 ) ) ) |
| 10 |
4 8 9
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( 𝑅 ‘ ◡ ( 𝐹 ∘ ◡ 𝐺 ) ) = ( 𝑅 ‘ ( 𝐹 ∘ ◡ 𝐺 ) ) ) |
| 11 |
|
cnvco |
⊢ ◡ ( 𝐹 ∘ ◡ 𝐺 ) = ( ◡ ◡ 𝐺 ∘ ◡ 𝐹 ) |
| 12 |
|
cocnvcnv1 |
⊢ ( ◡ ◡ 𝐺 ∘ ◡ 𝐹 ) = ( 𝐺 ∘ ◡ 𝐹 ) |
| 13 |
11 12
|
eqtri |
⊢ ◡ ( 𝐹 ∘ ◡ 𝐺 ) = ( 𝐺 ∘ ◡ 𝐹 ) |
| 14 |
13
|
fveq2i |
⊢ ( 𝑅 ‘ ◡ ( 𝐹 ∘ ◡ 𝐺 ) ) = ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) |
| 15 |
10 14
|
eqtr3di |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) → ( 𝑅 ‘ ( 𝐹 ∘ ◡ 𝐺 ) ) = ( 𝑅 ‘ ( 𝐺 ∘ ◡ 𝐹 ) ) ) |