Metamath Proof Explorer


Theorem trlcoabs

Description: Absorption into a composition by joining with trace. (Contributed by NM, 22-Jul-2013)

Ref Expression
Hypotheses trlcoabs.l ˙ = K
trlcoabs.j ˙ = join K
trlcoabs.a A = Atoms K
trlcoabs.h H = LHyp K
trlcoabs.t T = LTrn K W
trlcoabs.r R = trL K W
Assertion trlcoabs K HL W H F T G T P A ¬ P ˙ W F G P ˙ R F = G P ˙ R F

Proof

Step Hyp Ref Expression
1 trlcoabs.l ˙ = K
2 trlcoabs.j ˙ = join K
3 trlcoabs.a A = Atoms K
4 trlcoabs.h H = LHyp K
5 trlcoabs.t T = LTrn K W
6 trlcoabs.r R = trL K W
7 1 3 4 5 ltrncoval K HL W H F T G T P A F G P = F G P
8 7 3adant3r K HL W H F T G T P A ¬ P ˙ W F G P = F G P
9 8 oveq1d K HL W H F T G T P A ¬ P ˙ W F G P ˙ R F = F G P ˙ R F
10 simp1 K HL W H F T G T P A ¬ P ˙ W K HL W H
11 simp2l K HL W H F T G T P A ¬ P ˙ W F T
12 1 3 4 5 ltrnel K HL W H G T P A ¬ P ˙ W G P A ¬ G P ˙ W
13 12 3adant2l K HL W H F T G T P A ¬ P ˙ W G P A ¬ G P ˙ W
14 1 2 3 4 5 6 trljat3 K HL W H F T G P A ¬ G P ˙ W G P ˙ R F = F G P ˙ R F
15 10 11 13 14 syl3anc K HL W H F T G T P A ¬ P ˙ W G P ˙ R F = F G P ˙ R F
16 9 15 eqtr4d K HL W H F T G T P A ¬ P ˙ W F G P ˙ R F = G P ˙ R F