Metamath Proof Explorer


Theorem ltrncoval

Description: Two ways to express value of translation composition. (Contributed by NM, 31-May-2013)

Ref Expression
Hypotheses ltrnel.l ˙=K
ltrnel.a A=AtomsK
ltrnel.h H=LHypK
ltrnel.t T=LTrnKW
Assertion ltrncoval KHLWHFTGTPAFGP=FGP

Proof

Step Hyp Ref Expression
1 ltrnel.l ˙=K
2 ltrnel.a A=AtomsK
3 ltrnel.h H=LHypK
4 ltrnel.t T=LTrnKW
5 simp1 KHLWHFTGTPAKHLWH
6 simp2r KHLWHFTGTPAGT
7 eqid BaseK=BaseK
8 7 3 4 ltrn1o KHLWHGTG:BaseK1-1 ontoBaseK
9 5 6 8 syl2anc KHLWHFTGTPAG:BaseK1-1 ontoBaseK
10 f1of G:BaseK1-1 ontoBaseKG:BaseKBaseK
11 9 10 syl KHLWHFTGTPAG:BaseKBaseK
12 7 2 atbase PAPBaseK
13 12 3ad2ant3 KHLWHFTGTPAPBaseK
14 fvco3 G:BaseKBaseKPBaseKFGP=FGP
15 11 13 14 syl2anc KHLWHFTGTPAFGP=FGP