Step |
Hyp |
Ref |
Expression |
1 |
|
ltrnel.l |
|- .<_ = ( le ` K ) |
2 |
|
ltrnel.a |
|- A = ( Atoms ` K ) |
3 |
|
ltrnel.h |
|- H = ( LHyp ` K ) |
4 |
|
ltrnel.t |
|- T = ( ( LTrn ` K ) ` W ) |
5 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ P e. A ) -> ( K e. HL /\ W e. H ) ) |
6 |
|
simp2r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ P e. A ) -> G e. T ) |
7 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
8 |
7 3 4
|
ltrn1o |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T ) -> G : ( Base ` K ) -1-1-onto-> ( Base ` K ) ) |
9 |
5 6 8
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ P e. A ) -> G : ( Base ` K ) -1-1-onto-> ( Base ` K ) ) |
10 |
|
f1of |
|- ( G : ( Base ` K ) -1-1-onto-> ( Base ` K ) -> G : ( Base ` K ) --> ( Base ` K ) ) |
11 |
9 10
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ P e. A ) -> G : ( Base ` K ) --> ( Base ` K ) ) |
12 |
7 2
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
13 |
12
|
3ad2ant3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ P e. A ) -> P e. ( Base ` K ) ) |
14 |
|
fvco3 |
|- ( ( G : ( Base ` K ) --> ( Base ` K ) /\ P e. ( Base ` K ) ) -> ( ( F o. G ) ` P ) = ( F ` ( G ` P ) ) ) |
15 |
11 13 14
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ P e. A ) -> ( ( F o. G ) ` P ) = ( F ` ( G ` P ) ) ) |