Metamath Proof Explorer


Theorem trlcoabs

Description: Absorption into a composition by joining with trace. (Contributed by NM, 22-Jul-2013)

Ref Expression
Hypotheses trlcoabs.l
|- .<_ = ( le ` K )
trlcoabs.j
|- .\/ = ( join ` K )
trlcoabs.a
|- A = ( Atoms ` K )
trlcoabs.h
|- H = ( LHyp ` K )
trlcoabs.t
|- T = ( ( LTrn ` K ) ` W )
trlcoabs.r
|- R = ( ( trL ` K ) ` W )
Assertion trlcoabs
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( ( F o. G ) ` P ) .\/ ( R ` F ) ) = ( ( G ` P ) .\/ ( R ` F ) ) )

Proof

Step Hyp Ref Expression
1 trlcoabs.l
 |-  .<_ = ( le ` K )
2 trlcoabs.j
 |-  .\/ = ( join ` K )
3 trlcoabs.a
 |-  A = ( Atoms ` K )
4 trlcoabs.h
 |-  H = ( LHyp ` K )
5 trlcoabs.t
 |-  T = ( ( LTrn ` K ) ` W )
6 trlcoabs.r
 |-  R = ( ( trL ` K ) ` W )
7 1 3 4 5 ltrncoval
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ P e. A ) -> ( ( F o. G ) ` P ) = ( F ` ( G ` P ) ) )
8 7 3adant3r
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( F o. G ) ` P ) = ( F ` ( G ` P ) ) )
9 8 oveq1d
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( ( F o. G ) ` P ) .\/ ( R ` F ) ) = ( ( F ` ( G ` P ) ) .\/ ( R ` F ) ) )
10 simp1
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( K e. HL /\ W e. H ) )
11 simp2l
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) -> F e. T )
12 1 3 4 5 ltrnel
 |-  ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) )
13 12 3adant2l
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) )
14 1 2 3 4 5 6 trljat3
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( ( G ` P ) e. A /\ -. ( G ` P ) .<_ W ) ) -> ( ( G ` P ) .\/ ( R ` F ) ) = ( ( F ` ( G ` P ) ) .\/ ( R ` F ) ) )
15 10 11 13 14 syl3anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( G ` P ) .\/ ( R ` F ) ) = ( ( F ` ( G ` P ) ) .\/ ( R ` F ) ) )
16 9 15 eqtr4d
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( ( F o. G ) ` P ) .\/ ( R ` F ) ) = ( ( G ` P ) .\/ ( R ` F ) ) )