Description: The composition of two lattice automorphisms is a lattice automorphism. (Contributed by NM, 19-Apr-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ldilco.h | |
|
ldilco.d | |
||
Assertion | ldilco | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldilco.h | |
|
2 | ldilco.d | |
|
3 | simp1l | |
|
4 | eqid | |
|
5 | 1 4 2 | ldillaut | |
6 | 5 | 3adant3 | |
7 | 1 4 2 | ldillaut | |
8 | 7 | 3adant2 | |
9 | 4 | lautco | |
10 | 3 6 8 9 | syl3anc | |
11 | simp11 | |
|
12 | simp13 | |
|
13 | eqid | |
|
14 | 13 1 2 | ldil1o | |
15 | 11 12 14 | syl2anc | |
16 | f1of | |
|
17 | 15 16 | syl | |
18 | simp2 | |
|
19 | fvco3 | |
|
20 | 17 18 19 | syl2anc | |
21 | simp3 | |
|
22 | eqid | |
|
23 | 13 22 1 2 | ldilval | |
24 | 11 12 18 21 23 | syl112anc | |
25 | 24 | fveq2d | |
26 | simp12 | |
|
27 | 13 22 1 2 | ldilval | |
28 | 11 26 18 21 27 | syl112anc | |
29 | 20 25 28 | 3eqtrd | |
30 | 29 | 3exp | |
31 | 30 | ralrimiv | |
32 | 13 22 1 4 2 | isldil | |
33 | 32 | 3ad2ant1 | |
34 | 10 31 33 | mpbir2and | |