Metamath Proof Explorer


Theorem ldilco

Description: The composition of two lattice automorphisms is a lattice automorphism. (Contributed by NM, 19-Apr-2013)

Ref Expression
Hypotheses ldilco.h H=LHypK
ldilco.d D=LDilKW
Assertion ldilco KVWHFDGDFGD

Proof

Step Hyp Ref Expression
1 ldilco.h H=LHypK
2 ldilco.d D=LDilKW
3 simp1l KVWHFDGDKV
4 eqid LAutK=LAutK
5 1 4 2 ldillaut KVWHFDFLAutK
6 5 3adant3 KVWHFDGDFLAutK
7 1 4 2 ldillaut KVWHGDGLAutK
8 7 3adant2 KVWHFDGDGLAutK
9 4 lautco KVFLAutKGLAutKFGLAutK
10 3 6 8 9 syl3anc KVWHFDGDFGLAutK
11 simp11 KVWHFDGDxBaseKxKWKVWH
12 simp13 KVWHFDGDxBaseKxKWGD
13 eqid BaseK=BaseK
14 13 1 2 ldil1o KVWHGDG:BaseK1-1 ontoBaseK
15 11 12 14 syl2anc KVWHFDGDxBaseKxKWG:BaseK1-1 ontoBaseK
16 f1of G:BaseK1-1 ontoBaseKG:BaseKBaseK
17 15 16 syl KVWHFDGDxBaseKxKWG:BaseKBaseK
18 simp2 KVWHFDGDxBaseKxKWxBaseK
19 fvco3 G:BaseKBaseKxBaseKFGx=FGx
20 17 18 19 syl2anc KVWHFDGDxBaseKxKWFGx=FGx
21 simp3 KVWHFDGDxBaseKxKWxKW
22 eqid K=K
23 13 22 1 2 ldilval KVWHGDxBaseKxKWGx=x
24 11 12 18 21 23 syl112anc KVWHFDGDxBaseKxKWGx=x
25 24 fveq2d KVWHFDGDxBaseKxKWFGx=Fx
26 simp12 KVWHFDGDxBaseKxKWFD
27 13 22 1 2 ldilval KVWHFDxBaseKxKWFx=x
28 11 26 18 21 27 syl112anc KVWHFDGDxBaseKxKWFx=x
29 20 25 28 3eqtrd KVWHFDGDxBaseKxKWFGx=x
30 29 3exp KVWHFDGDxBaseKxKWFGx=x
31 30 ralrimiv KVWHFDGDxBaseKxKWFGx=x
32 13 22 1 4 2 isldil KVWHFGDFGLAutKxBaseKxKWFGx=x
33 32 3ad2ant1 KVWHFDGDFGDFGLAutKxBaseKxKWFGx=x
34 10 31 33 mpbir2and KVWHFDGDFGD