Metamath Proof Explorer


Theorem cdlemk53

Description: Part of proof of Lemma K of Crawley p. 118. Line 7, p. 120. G , I stand for g, h. X represents tau. (Contributed by NM, 26-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B = Base K
cdlemk5.l ˙ = K
cdlemk5.j ˙ = join K
cdlemk5.m ˙ = meet K
cdlemk5.a A = Atoms K
cdlemk5.h H = LHyp K
cdlemk5.t T = LTrn K W
cdlemk5.r R = trL K W
cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
Assertion cdlemk53 K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G R I G I / g X = G / g X I / g X

Proof

Step Hyp Ref Expression
1 cdlemk5.b B = Base K
2 cdlemk5.l ˙ = K
3 cdlemk5.j ˙ = join K
4 cdlemk5.m ˙ = meet K
5 cdlemk5.a A = Atoms K
6 cdlemk5.h H = LHyp K
7 cdlemk5.t T = LTrn K W
8 cdlemk5.r R = trL K W
9 cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
10 cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
11 cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
12 simp1l K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G R I K HL W H
13 simp211 K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G R I F T
14 simp212 K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G R I F I B
15 13 14 jca K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G R I F T F I B
16 simp22 K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G R I G T
17 simp213 K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G R I N T
18 simp23 K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G R I P A ¬ P ˙ W
19 simp1r K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G R I R F = R N
20 1 2 3 4 5 6 7 8 9 10 11 cdlemk35s-id K HL W H F T F I B G T N T P A ¬ P ˙ W R F = R N G / g X T
21 12 15 16 17 18 19 20 syl132anc K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G R I G / g X T
22 1 6 7 ltrn1o K HL W H G / g X T G / g X : B 1-1 onto B
23 12 21 22 syl2anc K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G R I G / g X : B 1-1 onto B
24 f1of G / g X : B 1-1 onto B G / g X : B B
25 fcoi1 G / g X : B B G / g X I B = G / g X
26 23 24 25 3syl K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G R I G / g X I B = G / g X
27 26 adantr K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G R I I = I B G / g X I B = G / g X
28 simpl1l K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G R I I = I B K HL W H
29 13 17 19 3jca K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G R I F T N T R F = R N
30 29 adantr K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G R I I = I B F T N T R F = R N
31 simpl23 K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G R I I = I B P A ¬ P ˙ W
32 simpr K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G R I I = I B I = I B
33 1 2 3 4 5 6 7 8 9 10 11 cdlemkid K HL W H F T N T R F = R N P A ¬ P ˙ W I = I B I / g X = I B
34 28 30 31 32 33 syl112anc K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G R I I = I B I / g X = I B
35 34 coeq2d K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G R I I = I B G / g X I / g X = G / g X I B
36 32 coeq2d K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G R I I = I B G I = G I B
37 1 6 7 ltrn1o K HL W H G T G : B 1-1 onto B
38 12 16 37 syl2anc K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G R I G : B 1-1 onto B
39 f1of G : B 1-1 onto B G : B B
40 fcoi1 G : B B G I B = G
41 38 39 40 3syl K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G R I G I B = G
42 41 adantr K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G R I I = I B G I B = G
43 36 42 eqtrd K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G R I I = I B G I = G
44 43 csbeq1d K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G R I I = I B G I / g X = G / g X
45 27 35 44 3eqtr4rd K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G R I I = I B G I / g X = G / g X I / g X
46 simpl1 K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G R I I I B K HL W H R F = R N
47 simpl2 K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G R I I I B F T F I B N T G T P A ¬ P ˙ W
48 simpl3l K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G R I I I B I T
49 simpr K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G R I I I B I I B
50 simpl3r K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G R I I I B R G R I
51 1 2 3 4 5 6 7 8 9 10 11 cdlemk53b K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T I I B R G R I G I / g X = G / g X I / g X
52 46 47 48 49 50 51 syl113anc K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G R I I I B G I / g X = G / g X I / g X
53 45 52 pm2.61dane K HL W H R F = R N F T F I B N T G T P A ¬ P ˙ W I T R G R I G I / g X = G / g X I / g X