Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk5.b |
|
2 |
|
cdlemk5.l |
|
3 |
|
cdlemk5.j |
|
4 |
|
cdlemk5.m |
|
5 |
|
cdlemk5.a |
|
6 |
|
cdlemk5.h |
|
7 |
|
cdlemk5.t |
|
8 |
|
cdlemk5.r |
|
9 |
|
cdlemk5.z |
|
10 |
|
cdlemk5.y |
|
11 |
|
cdlemk5.x |
|
12 |
|
simp1l |
|
13 |
|
simp211 |
|
14 |
|
simp212 |
|
15 |
13 14
|
jca |
|
16 |
|
simp22 |
|
17 |
|
simp213 |
|
18 |
|
simp23 |
|
19 |
|
simp1r |
|
20 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk35s-id |
|
21 |
12 15 16 17 18 19 20
|
syl132anc |
|
22 |
1 6 7
|
ltrn1o |
|
23 |
12 21 22
|
syl2anc |
|
24 |
|
f1of |
|
25 |
|
fcoi1 |
|
26 |
23 24 25
|
3syl |
|
27 |
26
|
adantr |
|
28 |
|
simpl1l |
|
29 |
13 17 19
|
3jca |
|
30 |
29
|
adantr |
|
31 |
|
simpl23 |
|
32 |
|
simpr |
|
33 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemkid |
|
34 |
28 30 31 32 33
|
syl112anc |
|
35 |
34
|
coeq2d |
|
36 |
32
|
coeq2d |
|
37 |
1 6 7
|
ltrn1o |
|
38 |
12 16 37
|
syl2anc |
|
39 |
|
f1of |
|
40 |
|
fcoi1 |
|
41 |
38 39 40
|
3syl |
|
42 |
41
|
adantr |
|
43 |
36 42
|
eqtrd |
|
44 |
43
|
csbeq1d |
|
45 |
27 35 44
|
3eqtr4rd |
|
46 |
|
simpl1 |
|
47 |
|
simpl2 |
|
48 |
|
simpl3l |
|
49 |
|
simpr |
|
50 |
|
simpl3r |
|
51 |
1 2 3 4 5 6 7 8 9 10 11
|
cdlemk53b |
|
52 |
46 47 48 49 50 51
|
syl113anc |
|
53 |
45 52
|
pm2.61dane |
|