Description: Part of proof of Lemma K of Crawley p. 118. Value of the sigma_1 (p) function U . (Contributed by NM, 2-Jul-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cdlemk1.b | |- B = ( Base ` K ) |
|
| cdlemk1.l | |- .<_ = ( le ` K ) |
||
| cdlemk1.j | |- .\/ = ( join ` K ) |
||
| cdlemk1.m | |- ./\ = ( meet ` K ) |
||
| cdlemk1.a | |- A = ( Atoms ` K ) |
||
| cdlemk1.h | |- H = ( LHyp ` K ) |
||
| cdlemk1.t | |- T = ( ( LTrn ` K ) ` W ) |
||
| cdlemk1.r | |- R = ( ( trL ` K ) ` W ) |
||
| cdlemk1.s | |- S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) ) |
||
| cdlemk1.o | |- O = ( S ` D ) |
||
| cdlemk1.u | |- U = ( e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( O ` P ) .\/ ( R ` ( e o. `' D ) ) ) ) ) ) |
||
| Assertion | cdlemkuvN | |- ( G e. T -> ( U ` G ) = ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( O ` P ) .\/ ( R ` ( G o. `' D ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdlemk1.b | |- B = ( Base ` K ) |
|
| 2 | cdlemk1.l | |- .<_ = ( le ` K ) |
|
| 3 | cdlemk1.j | |- .\/ = ( join ` K ) |
|
| 4 | cdlemk1.m | |- ./\ = ( meet ` K ) |
|
| 5 | cdlemk1.a | |- A = ( Atoms ` K ) |
|
| 6 | cdlemk1.h | |- H = ( LHyp ` K ) |
|
| 7 | cdlemk1.t | |- T = ( ( LTrn ` K ) ` W ) |
|
| 8 | cdlemk1.r | |- R = ( ( trL ` K ) ` W ) |
|
| 9 | cdlemk1.s | |- S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) ) |
|
| 10 | cdlemk1.o | |- O = ( S ` D ) |
|
| 11 | cdlemk1.u | |- U = ( e e. T |-> ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` e ) ) ./\ ( ( O ` P ) .\/ ( R ` ( e o. `' D ) ) ) ) ) ) |
|
| 12 | 1 2 3 5 6 7 8 4 11 | cdlemksv | |- ( G e. T -> ( U ` G ) = ( iota_ j e. T ( j ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( O ` P ) .\/ ( R ` ( G o. `' D ) ) ) ) ) ) |