Metamath Proof Explorer


Theorem cgrcomand

Description: Deduction form of cgrcom . (Contributed by Scott Fenton, 13-Oct-2013)

Ref Expression
Hypotheses cgrcomand.1
|- ( ph -> N e. NN )
cgrcomand.2
|- ( ph -> A e. ( EE ` N ) )
cgrcomand.3
|- ( ph -> B e. ( EE ` N ) )
cgrcomand.4
|- ( ph -> C e. ( EE ` N ) )
cgrcomand.5
|- ( ph -> D e. ( EE ` N ) )
cgrcomand.6
|- ( ( ph /\ ps ) -> <. A , B >. Cgr <. C , D >. )
Assertion cgrcomand
|- ( ( ph /\ ps ) -> <. C , D >. Cgr <. A , B >. )

Proof

Step Hyp Ref Expression
1 cgrcomand.1
 |-  ( ph -> N e. NN )
2 cgrcomand.2
 |-  ( ph -> A e. ( EE ` N ) )
3 cgrcomand.3
 |-  ( ph -> B e. ( EE ` N ) )
4 cgrcomand.4
 |-  ( ph -> C e. ( EE ` N ) )
5 cgrcomand.5
 |-  ( ph -> D e. ( EE ` N ) )
6 cgrcomand.6
 |-  ( ( ph /\ ps ) -> <. A , B >. Cgr <. C , D >. )
7 cgrcom
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. C , D >. <-> <. C , D >. Cgr <. A , B >. ) )
8 1 2 3 4 5 7 syl122anc
 |-  ( ph -> ( <. A , B >. Cgr <. C , D >. <-> <. C , D >. Cgr <. A , B >. ) )
9 8 adantr
 |-  ( ( ph /\ ps ) -> ( <. A , B >. Cgr <. C , D >. <-> <. C , D >. Cgr <. A , B >. ) )
10 6 9 mpbid
 |-  ( ( ph /\ ps ) -> <. C , D >. Cgr <. A , B >. )