Metamath Proof Explorer


Theorem cgrcomand

Description: Deduction form of cgrcom . (Contributed by Scott Fenton, 13-Oct-2013)

Ref Expression
Hypotheses cgrcomand.1 ( 𝜑𝑁 ∈ ℕ )
cgrcomand.2 ( 𝜑𝐴 ∈ ( 𝔼 ‘ 𝑁 ) )
cgrcomand.3 ( 𝜑𝐵 ∈ ( 𝔼 ‘ 𝑁 ) )
cgrcomand.4 ( 𝜑𝐶 ∈ ( 𝔼 ‘ 𝑁 ) )
cgrcomand.5 ( 𝜑𝐷 ∈ ( 𝔼 ‘ 𝑁 ) )
cgrcomand.6 ( ( 𝜑𝜓 ) → ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ )
Assertion cgrcomand ( ( 𝜑𝜓 ) → ⟨ 𝐶 , 𝐷 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ )

Proof

Step Hyp Ref Expression
1 cgrcomand.1 ( 𝜑𝑁 ∈ ℕ )
2 cgrcomand.2 ( 𝜑𝐴 ∈ ( 𝔼 ‘ 𝑁 ) )
3 cgrcomand.3 ( 𝜑𝐵 ∈ ( 𝔼 ‘ 𝑁 ) )
4 cgrcomand.4 ( 𝜑𝐶 ∈ ( 𝔼 ‘ 𝑁 ) )
5 cgrcomand.5 ( 𝜑𝐷 ∈ ( 𝔼 ‘ 𝑁 ) )
6 cgrcomand.6 ( ( 𝜑𝜓 ) → ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ )
7 cgrcom ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ↔ ⟨ 𝐶 , 𝐷 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) )
8 1 2 3 4 5 7 syl122anc ( 𝜑 → ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ↔ ⟨ 𝐶 , 𝐷 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) )
9 8 adantr ( ( 𝜑𝜓 ) → ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ↔ ⟨ 𝐶 , 𝐷 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ ) )
10 6 9 mpbid ( ( 𝜑𝜓 ) → ⟨ 𝐶 , 𝐷 ⟩ Cgr ⟨ 𝐴 , 𝐵 ⟩ )