| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							chdmm4 | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) = ( A vH B ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							fveq2d | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( _|_ ` ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) = ( _|_ ` ( A vH B ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							choccl | 
							 |-  ( A e. CH -> ( _|_ ` A ) e. CH )  | 
						
						
							| 4 | 
							
								
							 | 
							choccl | 
							 |-  ( B e. CH -> ( _|_ ` B ) e. CH )  | 
						
						
							| 5 | 
							
								
							 | 
							chincl | 
							 |-  ( ( ( _|_ ` A ) e. CH /\ ( _|_ ` B ) e. CH ) -> ( ( _|_ ` A ) i^i ( _|_ ` B ) ) e. CH )  | 
						
						
							| 6 | 
							
								3 4 5
							 | 
							syl2an | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( ( _|_ ` A ) i^i ( _|_ ` B ) ) e. CH )  | 
						
						
							| 7 | 
							
								
							 | 
							ococ | 
							 |-  ( ( ( _|_ ` A ) i^i ( _|_ ` B ) ) e. CH -> ( _|_ ` ( _|_ ` ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) = ( ( _|_ ` A ) i^i ( _|_ ` B ) ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							syl | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( _|_ ` ( ( _|_ ` A ) i^i ( _|_ ` B ) ) ) ) = ( ( _|_ ` A ) i^i ( _|_ ` B ) ) )  | 
						
						
							| 9 | 
							
								2 8
							 | 
							eqtr3d | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( A vH B ) ) = ( ( _|_ ` A ) i^i ( _|_ ` B ) ) )  |