| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chdmm4 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( 𝐴 ∨ℋ 𝐵 ) ) |
| 2 |
1
|
fveq2d |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ⊥ ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) = ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| 3 |
|
choccl |
⊢ ( 𝐴 ∈ Cℋ → ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) |
| 4 |
|
choccl |
⊢ ( 𝐵 ∈ Cℋ → ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) |
| 5 |
|
chincl |
⊢ ( ( ( ⊥ ‘ 𝐴 ) ∈ Cℋ ∧ ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) → ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ ) |
| 6 |
3 4 5
|
syl2an |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ ) |
| 7 |
|
ococ |
⊢ ( ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ → ( ⊥ ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) |
| 8 |
6 7
|
syl |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ⊥ ‘ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) |
| 9 |
2 8
|
eqtr3d |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ) |