| Step |
Hyp |
Ref |
Expression |
| 1 |
|
choccl |
⊢ ( 𝐴 ∈ Cℋ → ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) |
| 2 |
|
chdmj1 |
⊢ ( ( ( ⊥ ‘ 𝐴 ) ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) |
| 3 |
1 2
|
sylan |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) ) |
| 4 |
|
ococ |
⊢ ( 𝐴 ∈ Cℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = 𝐴 ) |
| 5 |
4
|
ineq1d |
⊢ ( 𝐴 ∈ Cℋ → ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∩ ( ⊥ ‘ 𝐵 ) ) = ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) |
| 7 |
3 6
|
eqtrd |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) |