Step |
Hyp |
Ref |
Expression |
1 |
|
flidm |
|- ( A e. RR -> ( |_ ` ( |_ ` A ) ) = ( |_ ` A ) ) |
2 |
1
|
oveq2d |
|- ( A e. RR -> ( 1 ... ( |_ ` ( |_ ` A ) ) ) = ( 1 ... ( |_ ` A ) ) ) |
3 |
2
|
sumeq1d |
|- ( A e. RR -> sum_ x e. ( 1 ... ( |_ ` ( |_ ` A ) ) ) ( Lam ` x ) = sum_ x e. ( 1 ... ( |_ ` A ) ) ( Lam ` x ) ) |
4 |
|
reflcl |
|- ( A e. RR -> ( |_ ` A ) e. RR ) |
5 |
|
chpval |
|- ( ( |_ ` A ) e. RR -> ( psi ` ( |_ ` A ) ) = sum_ x e. ( 1 ... ( |_ ` ( |_ ` A ) ) ) ( Lam ` x ) ) |
6 |
4 5
|
syl |
|- ( A e. RR -> ( psi ` ( |_ ` A ) ) = sum_ x e. ( 1 ... ( |_ ` ( |_ ` A ) ) ) ( Lam ` x ) ) |
7 |
|
chpval |
|- ( A e. RR -> ( psi ` A ) = sum_ x e. ( 1 ... ( |_ ` A ) ) ( Lam ` x ) ) |
8 |
3 6 7
|
3eqtr4d |
|- ( A e. RR -> ( psi ` ( |_ ` A ) ) = ( psi ` A ) ) |