Step |
Hyp |
Ref |
Expression |
1 |
|
fzfid |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( 2 ... A ) e. Fin ) |
2 |
|
inss1 |
|- ( ( 2 ... A ) i^i Prime ) C_ ( 2 ... A ) |
3 |
|
ssfi |
|- ( ( ( 2 ... A ) e. Fin /\ ( ( 2 ... A ) i^i Prime ) C_ ( 2 ... A ) ) -> ( ( 2 ... A ) i^i Prime ) e. Fin ) |
4 |
1 2 3
|
sylancl |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( 2 ... A ) i^i Prime ) e. Fin ) |
5 |
|
zre |
|- ( A e. ZZ -> A e. RR ) |
6 |
5
|
adantr |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> A e. RR ) |
7 |
6
|
ltp1d |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> A < ( A + 1 ) ) |
8 |
|
peano2z |
|- ( A e. ZZ -> ( A + 1 ) e. ZZ ) |
9 |
8
|
adantr |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( A + 1 ) e. ZZ ) |
10 |
9
|
zred |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( A + 1 ) e. RR ) |
11 |
6 10
|
ltnled |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( A < ( A + 1 ) <-> -. ( A + 1 ) <_ A ) ) |
12 |
7 11
|
mpbid |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> -. ( A + 1 ) <_ A ) |
13 |
|
elinel1 |
|- ( ( A + 1 ) e. ( ( 2 ... A ) i^i Prime ) -> ( A + 1 ) e. ( 2 ... A ) ) |
14 |
|
elfzle2 |
|- ( ( A + 1 ) e. ( 2 ... A ) -> ( A + 1 ) <_ A ) |
15 |
13 14
|
syl |
|- ( ( A + 1 ) e. ( ( 2 ... A ) i^i Prime ) -> ( A + 1 ) <_ A ) |
16 |
12 15
|
nsyl |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> -. ( A + 1 ) e. ( ( 2 ... A ) i^i Prime ) ) |
17 |
|
ovex |
|- ( A + 1 ) e. _V |
18 |
|
hashunsng |
|- ( ( A + 1 ) e. _V -> ( ( ( ( 2 ... A ) i^i Prime ) e. Fin /\ -. ( A + 1 ) e. ( ( 2 ... A ) i^i Prime ) ) -> ( # ` ( ( ( 2 ... A ) i^i Prime ) u. { ( A + 1 ) } ) ) = ( ( # ` ( ( 2 ... A ) i^i Prime ) ) + 1 ) ) ) |
19 |
17 18
|
ax-mp |
|- ( ( ( ( 2 ... A ) i^i Prime ) e. Fin /\ -. ( A + 1 ) e. ( ( 2 ... A ) i^i Prime ) ) -> ( # ` ( ( ( 2 ... A ) i^i Prime ) u. { ( A + 1 ) } ) ) = ( ( # ` ( ( 2 ... A ) i^i Prime ) ) + 1 ) ) |
20 |
4 16 19
|
syl2anc |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( # ` ( ( ( 2 ... A ) i^i Prime ) u. { ( A + 1 ) } ) ) = ( ( # ` ( ( 2 ... A ) i^i Prime ) ) + 1 ) ) |
21 |
|
ppival2 |
|- ( ( A + 1 ) e. ZZ -> ( ppi ` ( A + 1 ) ) = ( # ` ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) |
22 |
9 21
|
syl |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ppi ` ( A + 1 ) ) = ( # ` ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) ) |
23 |
|
2z |
|- 2 e. ZZ |
24 |
|
zcn |
|- ( A e. ZZ -> A e. CC ) |
25 |
24
|
adantr |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> A e. CC ) |
26 |
|
ax-1cn |
|- 1 e. CC |
27 |
|
pncan |
|- ( ( A e. CC /\ 1 e. CC ) -> ( ( A + 1 ) - 1 ) = A ) |
28 |
25 26 27
|
sylancl |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( A + 1 ) - 1 ) = A ) |
29 |
|
prmuz2 |
|- ( ( A + 1 ) e. Prime -> ( A + 1 ) e. ( ZZ>= ` 2 ) ) |
30 |
29
|
adantl |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( A + 1 ) e. ( ZZ>= ` 2 ) ) |
31 |
|
uz2m1nn |
|- ( ( A + 1 ) e. ( ZZ>= ` 2 ) -> ( ( A + 1 ) - 1 ) e. NN ) |
32 |
30 31
|
syl |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( A + 1 ) - 1 ) e. NN ) |
33 |
28 32
|
eqeltrrd |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> A e. NN ) |
34 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
35 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
36 |
35
|
fveq2i |
|- ( ZZ>= ` ( 2 - 1 ) ) = ( ZZ>= ` 1 ) |
37 |
34 36
|
eqtr4i |
|- NN = ( ZZ>= ` ( 2 - 1 ) ) |
38 |
33 37
|
eleqtrdi |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> A e. ( ZZ>= ` ( 2 - 1 ) ) ) |
39 |
|
fzsuc2 |
|- ( ( 2 e. ZZ /\ A e. ( ZZ>= ` ( 2 - 1 ) ) ) -> ( 2 ... ( A + 1 ) ) = ( ( 2 ... A ) u. { ( A + 1 ) } ) ) |
40 |
23 38 39
|
sylancr |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( 2 ... ( A + 1 ) ) = ( ( 2 ... A ) u. { ( A + 1 ) } ) ) |
41 |
40
|
ineq1d |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( 2 ... ( A + 1 ) ) i^i Prime ) = ( ( ( 2 ... A ) u. { ( A + 1 ) } ) i^i Prime ) ) |
42 |
|
indir |
|- ( ( ( 2 ... A ) u. { ( A + 1 ) } ) i^i Prime ) = ( ( ( 2 ... A ) i^i Prime ) u. ( { ( A + 1 ) } i^i Prime ) ) |
43 |
41 42
|
eqtrdi |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( 2 ... ( A + 1 ) ) i^i Prime ) = ( ( ( 2 ... A ) i^i Prime ) u. ( { ( A + 1 ) } i^i Prime ) ) ) |
44 |
|
simpr |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( A + 1 ) e. Prime ) |
45 |
44
|
snssd |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> { ( A + 1 ) } C_ Prime ) |
46 |
|
df-ss |
|- ( { ( A + 1 ) } C_ Prime <-> ( { ( A + 1 ) } i^i Prime ) = { ( A + 1 ) } ) |
47 |
45 46
|
sylib |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( { ( A + 1 ) } i^i Prime ) = { ( A + 1 ) } ) |
48 |
47
|
uneq2d |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( ( 2 ... A ) i^i Prime ) u. ( { ( A + 1 ) } i^i Prime ) ) = ( ( ( 2 ... A ) i^i Prime ) u. { ( A + 1 ) } ) ) |
49 |
43 48
|
eqtrd |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( 2 ... ( A + 1 ) ) i^i Prime ) = ( ( ( 2 ... A ) i^i Prime ) u. { ( A + 1 ) } ) ) |
50 |
49
|
fveq2d |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( # ` ( ( 2 ... ( A + 1 ) ) i^i Prime ) ) = ( # ` ( ( ( 2 ... A ) i^i Prime ) u. { ( A + 1 ) } ) ) ) |
51 |
22 50
|
eqtrd |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ppi ` ( A + 1 ) ) = ( # ` ( ( ( 2 ... A ) i^i Prime ) u. { ( A + 1 ) } ) ) ) |
52 |
|
ppival2 |
|- ( A e. ZZ -> ( ppi ` A ) = ( # ` ( ( 2 ... A ) i^i Prime ) ) ) |
53 |
52
|
adantr |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ppi ` A ) = ( # ` ( ( 2 ... A ) i^i Prime ) ) ) |
54 |
53
|
oveq1d |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ( ppi ` A ) + 1 ) = ( ( # ` ( ( 2 ... A ) i^i Prime ) ) + 1 ) ) |
55 |
20 51 54
|
3eqtr4d |
|- ( ( A e. ZZ /\ ( A + 1 ) e. Prime ) -> ( ppi ` ( A + 1 ) ) = ( ( ppi ` A ) + 1 ) ) |