| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							uzp1 | 
							 |-  ( N e. ( ZZ>= ` ( M - 1 ) ) -> ( N = ( M - 1 ) \/ N e. ( ZZ>= ` ( ( M - 1 ) + 1 ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							zcn | 
							 |-  ( M e. ZZ -> M e. CC )  | 
						
						
							| 3 | 
							
								
							 | 
							ax-1cn | 
							 |-  1 e. CC  | 
						
						
							| 4 | 
							
								
							 | 
							npcan | 
							 |-  ( ( M e. CC /\ 1 e. CC ) -> ( ( M - 1 ) + 1 ) = M )  | 
						
						
							| 5 | 
							
								2 3 4
							 | 
							sylancl | 
							 |-  ( M e. ZZ -> ( ( M - 1 ) + 1 ) = M )  | 
						
						
							| 6 | 
							
								5
							 | 
							oveq2d | 
							 |-  ( M e. ZZ -> ( M ... ( ( M - 1 ) + 1 ) ) = ( M ... M ) )  | 
						
						
							| 7 | 
							
								
							 | 
							uncom | 
							 |-  ( (/) u. { M } ) = ( { M } u. (/) ) | 
						
						
							| 8 | 
							
								
							 | 
							un0 | 
							 |-  ( { M } u. (/) ) = { M } | 
						
						
							| 9 | 
							
								7 8
							 | 
							eqtri | 
							 |-  ( (/) u. { M } ) = { M } | 
						
						
							| 10 | 
							
								
							 | 
							zre | 
							 |-  ( M e. ZZ -> M e. RR )  | 
						
						
							| 11 | 
							
								10
							 | 
							ltm1d | 
							 |-  ( M e. ZZ -> ( M - 1 ) < M )  | 
						
						
							| 12 | 
							
								
							 | 
							peano2zm | 
							 |-  ( M e. ZZ -> ( M - 1 ) e. ZZ )  | 
						
						
							| 13 | 
							
								
							 | 
							fzn | 
							 |-  ( ( M e. ZZ /\ ( M - 1 ) e. ZZ ) -> ( ( M - 1 ) < M <-> ( M ... ( M - 1 ) ) = (/) ) )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							mpdan | 
							 |-  ( M e. ZZ -> ( ( M - 1 ) < M <-> ( M ... ( M - 1 ) ) = (/) ) )  | 
						
						
							| 15 | 
							
								11 14
							 | 
							mpbid | 
							 |-  ( M e. ZZ -> ( M ... ( M - 1 ) ) = (/) )  | 
						
						
							| 16 | 
							
								5
							 | 
							sneqd | 
							 |-  ( M e. ZZ -> { ( ( M - 1 ) + 1 ) } = { M } ) | 
						
						
							| 17 | 
							
								15 16
							 | 
							uneq12d | 
							 |-  ( M e. ZZ -> ( ( M ... ( M - 1 ) ) u. { ( ( M - 1 ) + 1 ) } ) = ( (/) u. { M } ) ) | 
						
						
							| 18 | 
							
								
							 | 
							fzsn | 
							 |-  ( M e. ZZ -> ( M ... M ) = { M } ) | 
						
						
							| 19 | 
							
								9 17 18
							 | 
							3eqtr4a | 
							 |-  ( M e. ZZ -> ( ( M ... ( M - 1 ) ) u. { ( ( M - 1 ) + 1 ) } ) = ( M ... M ) ) | 
						
						
							| 20 | 
							
								6 19
							 | 
							eqtr4d | 
							 |-  ( M e. ZZ -> ( M ... ( ( M - 1 ) + 1 ) ) = ( ( M ... ( M - 1 ) ) u. { ( ( M - 1 ) + 1 ) } ) ) | 
						
						
							| 21 | 
							
								
							 | 
							oveq1 | 
							 |-  ( N = ( M - 1 ) -> ( N + 1 ) = ( ( M - 1 ) + 1 ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							oveq2d | 
							 |-  ( N = ( M - 1 ) -> ( M ... ( N + 1 ) ) = ( M ... ( ( M - 1 ) + 1 ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							oveq2 | 
							 |-  ( N = ( M - 1 ) -> ( M ... N ) = ( M ... ( M - 1 ) ) )  | 
						
						
							| 24 | 
							
								21
							 | 
							sneqd | 
							 |-  ( N = ( M - 1 ) -> { ( N + 1 ) } = { ( ( M - 1 ) + 1 ) } ) | 
						
						
							| 25 | 
							
								23 24
							 | 
							uneq12d | 
							 |-  ( N = ( M - 1 ) -> ( ( M ... N ) u. { ( N + 1 ) } ) = ( ( M ... ( M - 1 ) ) u. { ( ( M - 1 ) + 1 ) } ) ) | 
						
						
							| 26 | 
							
								22 25
							 | 
							eqeq12d | 
							 |-  ( N = ( M - 1 ) -> ( ( M ... ( N + 1 ) ) = ( ( M ... N ) u. { ( N + 1 ) } ) <-> ( M ... ( ( M - 1 ) + 1 ) ) = ( ( M ... ( M - 1 ) ) u. { ( ( M - 1 ) + 1 ) } ) ) ) | 
						
						
							| 27 | 
							
								20 26
							 | 
							syl5ibrcom | 
							 |-  ( M e. ZZ -> ( N = ( M - 1 ) -> ( M ... ( N + 1 ) ) = ( ( M ... N ) u. { ( N + 1 ) } ) ) ) | 
						
						
							| 28 | 
							
								27
							 | 
							imp | 
							 |-  ( ( M e. ZZ /\ N = ( M - 1 ) ) -> ( M ... ( N + 1 ) ) = ( ( M ... N ) u. { ( N + 1 ) } ) ) | 
						
						
							| 29 | 
							
								5
							 | 
							fveq2d | 
							 |-  ( M e. ZZ -> ( ZZ>= ` ( ( M - 1 ) + 1 ) ) = ( ZZ>= ` M ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							eleq2d | 
							 |-  ( M e. ZZ -> ( N e. ( ZZ>= ` ( ( M - 1 ) + 1 ) ) <-> N e. ( ZZ>= ` M ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							biimpa | 
							 |-  ( ( M e. ZZ /\ N e. ( ZZ>= ` ( ( M - 1 ) + 1 ) ) ) -> N e. ( ZZ>= ` M ) )  | 
						
						
							| 32 | 
							
								
							 | 
							fzsuc | 
							 |-  ( N e. ( ZZ>= ` M ) -> ( M ... ( N + 1 ) ) = ( ( M ... N ) u. { ( N + 1 ) } ) ) | 
						
						
							| 33 | 
							
								31 32
							 | 
							syl | 
							 |-  ( ( M e. ZZ /\ N e. ( ZZ>= ` ( ( M - 1 ) + 1 ) ) ) -> ( M ... ( N + 1 ) ) = ( ( M ... N ) u. { ( N + 1 ) } ) ) | 
						
						
							| 34 | 
							
								28 33
							 | 
							jaodan | 
							 |-  ( ( M e. ZZ /\ ( N = ( M - 1 ) \/ N e. ( ZZ>= ` ( ( M - 1 ) + 1 ) ) ) ) -> ( M ... ( N + 1 ) ) = ( ( M ... N ) u. { ( N + 1 ) } ) ) | 
						
						
							| 35 | 
							
								1 34
							 | 
							sylan2 | 
							 |-  ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M - 1 ) ) ) -> ( M ... ( N + 1 ) ) = ( ( M ... N ) u. { ( N + 1 ) } ) ) |