| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							uzp1 | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  −  1 ) )  →  ( 𝑁  =  ( 𝑀  −  1 )  ∨  𝑁  ∈  ( ℤ≥ ‘ ( ( 𝑀  −  1 )  +  1 ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							zcn | 
							⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ℂ )  | 
						
						
							| 3 | 
							
								
							 | 
							ax-1cn | 
							⊢ 1  ∈  ℂ  | 
						
						
							| 4 | 
							
								
							 | 
							npcan | 
							⊢ ( ( 𝑀  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑀  −  1 )  +  1 )  =  𝑀 )  | 
						
						
							| 5 | 
							
								2 3 4
							 | 
							sylancl | 
							⊢ ( 𝑀  ∈  ℤ  →  ( ( 𝑀  −  1 )  +  1 )  =  𝑀 )  | 
						
						
							| 6 | 
							
								5
							 | 
							oveq2d | 
							⊢ ( 𝑀  ∈  ℤ  →  ( 𝑀 ... ( ( 𝑀  −  1 )  +  1 ) )  =  ( 𝑀 ... 𝑀 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							uncom | 
							⊢ ( ∅  ∪  { 𝑀 } )  =  ( { 𝑀 }  ∪  ∅ )  | 
						
						
							| 8 | 
							
								
							 | 
							un0 | 
							⊢ ( { 𝑀 }  ∪  ∅ )  =  { 𝑀 }  | 
						
						
							| 9 | 
							
								7 8
							 | 
							eqtri | 
							⊢ ( ∅  ∪  { 𝑀 } )  =  { 𝑀 }  | 
						
						
							| 10 | 
							
								
							 | 
							zre | 
							⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ℝ )  | 
						
						
							| 11 | 
							
								10
							 | 
							ltm1d | 
							⊢ ( 𝑀  ∈  ℤ  →  ( 𝑀  −  1 )  <  𝑀 )  | 
						
						
							| 12 | 
							
								
							 | 
							peano2zm | 
							⊢ ( 𝑀  ∈  ℤ  →  ( 𝑀  −  1 )  ∈  ℤ )  | 
						
						
							| 13 | 
							
								
							 | 
							fzn | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  ( 𝑀  −  1 )  ∈  ℤ )  →  ( ( 𝑀  −  1 )  <  𝑀  ↔  ( 𝑀 ... ( 𝑀  −  1 ) )  =  ∅ ) )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							mpdan | 
							⊢ ( 𝑀  ∈  ℤ  →  ( ( 𝑀  −  1 )  <  𝑀  ↔  ( 𝑀 ... ( 𝑀  −  1 ) )  =  ∅ ) )  | 
						
						
							| 15 | 
							
								11 14
							 | 
							mpbid | 
							⊢ ( 𝑀  ∈  ℤ  →  ( 𝑀 ... ( 𝑀  −  1 ) )  =  ∅ )  | 
						
						
							| 16 | 
							
								5
							 | 
							sneqd | 
							⊢ ( 𝑀  ∈  ℤ  →  { ( ( 𝑀  −  1 )  +  1 ) }  =  { 𝑀 } )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							uneq12d | 
							⊢ ( 𝑀  ∈  ℤ  →  ( ( 𝑀 ... ( 𝑀  −  1 ) )  ∪  { ( ( 𝑀  −  1 )  +  1 ) } )  =  ( ∅  ∪  { 𝑀 } ) )  | 
						
						
							| 18 | 
							
								
							 | 
							fzsn | 
							⊢ ( 𝑀  ∈  ℤ  →  ( 𝑀 ... 𝑀 )  =  { 𝑀 } )  | 
						
						
							| 19 | 
							
								9 17 18
							 | 
							3eqtr4a | 
							⊢ ( 𝑀  ∈  ℤ  →  ( ( 𝑀 ... ( 𝑀  −  1 ) )  ∪  { ( ( 𝑀  −  1 )  +  1 ) } )  =  ( 𝑀 ... 𝑀 ) )  | 
						
						
							| 20 | 
							
								6 19
							 | 
							eqtr4d | 
							⊢ ( 𝑀  ∈  ℤ  →  ( 𝑀 ... ( ( 𝑀  −  1 )  +  1 ) )  =  ( ( 𝑀 ... ( 𝑀  −  1 ) )  ∪  { ( ( 𝑀  −  1 )  +  1 ) } ) )  | 
						
						
							| 21 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑁  =  ( 𝑀  −  1 )  →  ( 𝑁  +  1 )  =  ( ( 𝑀  −  1 )  +  1 ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							oveq2d | 
							⊢ ( 𝑁  =  ( 𝑀  −  1 )  →  ( 𝑀 ... ( 𝑁  +  1 ) )  =  ( 𝑀 ... ( ( 𝑀  −  1 )  +  1 ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑁  =  ( 𝑀  −  1 )  →  ( 𝑀 ... 𝑁 )  =  ( 𝑀 ... ( 𝑀  −  1 ) ) )  | 
						
						
							| 24 | 
							
								21
							 | 
							sneqd | 
							⊢ ( 𝑁  =  ( 𝑀  −  1 )  →  { ( 𝑁  +  1 ) }  =  { ( ( 𝑀  −  1 )  +  1 ) } )  | 
						
						
							| 25 | 
							
								23 24
							 | 
							uneq12d | 
							⊢ ( 𝑁  =  ( 𝑀  −  1 )  →  ( ( 𝑀 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } )  =  ( ( 𝑀 ... ( 𝑀  −  1 ) )  ∪  { ( ( 𝑀  −  1 )  +  1 ) } ) )  | 
						
						
							| 26 | 
							
								22 25
							 | 
							eqeq12d | 
							⊢ ( 𝑁  =  ( 𝑀  −  1 )  →  ( ( 𝑀 ... ( 𝑁  +  1 ) )  =  ( ( 𝑀 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } )  ↔  ( 𝑀 ... ( ( 𝑀  −  1 )  +  1 ) )  =  ( ( 𝑀 ... ( 𝑀  −  1 ) )  ∪  { ( ( 𝑀  −  1 )  +  1 ) } ) ) )  | 
						
						
							| 27 | 
							
								20 26
							 | 
							syl5ibrcom | 
							⊢ ( 𝑀  ∈  ℤ  →  ( 𝑁  =  ( 𝑀  −  1 )  →  ( 𝑀 ... ( 𝑁  +  1 ) )  =  ( ( 𝑀 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } ) ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							imp | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  =  ( 𝑀  −  1 ) )  →  ( 𝑀 ... ( 𝑁  +  1 ) )  =  ( ( 𝑀 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } ) )  | 
						
						
							| 29 | 
							
								5
							 | 
							fveq2d | 
							⊢ ( 𝑀  ∈  ℤ  →  ( ℤ≥ ‘ ( ( 𝑀  −  1 )  +  1 ) )  =  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							eleq2d | 
							⊢ ( 𝑀  ∈  ℤ  →  ( 𝑁  ∈  ( ℤ≥ ‘ ( ( 𝑀  −  1 )  +  1 ) )  ↔  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							biimpa | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ( ℤ≥ ‘ ( ( 𝑀  −  1 )  +  1 ) ) )  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 32 | 
							
								
							 | 
							fzsuc | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑀 ... ( 𝑁  +  1 ) )  =  ( ( 𝑀 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } ) )  | 
						
						
							| 33 | 
							
								31 32
							 | 
							syl | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ( ℤ≥ ‘ ( ( 𝑀  −  1 )  +  1 ) ) )  →  ( 𝑀 ... ( 𝑁  +  1 ) )  =  ( ( 𝑀 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } ) )  | 
						
						
							| 34 | 
							
								28 33
							 | 
							jaodan | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  ( 𝑁  =  ( 𝑀  −  1 )  ∨  𝑁  ∈  ( ℤ≥ ‘ ( ( 𝑀  −  1 )  +  1 ) ) ) )  →  ( 𝑀 ... ( 𝑁  +  1 ) )  =  ( ( 𝑀 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } ) )  | 
						
						
							| 35 | 
							
								1 34
							 | 
							sylan2 | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  −  1 ) ) )  →  ( 𝑀 ... ( 𝑁  +  1 ) )  =  ( ( 𝑀 ... 𝑁 )  ∪  { ( 𝑁  +  1 ) } ) )  |