| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fzn0 | 
							⊢ ( ( 𝑀 ... 𝑁 )  ≠  ∅  ↔  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							eluz | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  ↔  𝑀  ≤  𝑁 ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							bitrid | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑀 ... 𝑁 )  ≠  ∅  ↔  𝑀  ≤  𝑁 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							zre | 
							⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ℝ )  | 
						
						
							| 5 | 
							
								
							 | 
							zre | 
							⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℝ )  | 
						
						
							| 6 | 
							
								
							 | 
							lenlt | 
							⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( 𝑀  ≤  𝑁  ↔  ¬  𝑁  <  𝑀 ) )  | 
						
						
							| 7 | 
							
								4 5 6
							 | 
							syl2an | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  ≤  𝑁  ↔  ¬  𝑁  <  𝑀 ) )  | 
						
						
							| 8 | 
							
								3 7
							 | 
							bitr2d | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ¬  𝑁  <  𝑀  ↔  ( 𝑀 ... 𝑁 )  ≠  ∅ ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							necon4bbid | 
							⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑁  <  𝑀  ↔  ( 𝑀 ... 𝑁 )  =  ∅ ) )  |