| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fzn0 | 
							 |-  ( ( M ... N ) =/= (/) <-> N e. ( ZZ>= ` M ) )  | 
						
						
							| 2 | 
							
								
							 | 
							eluz | 
							 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` M ) <-> M <_ N ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							bitrid | 
							 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M ... N ) =/= (/) <-> M <_ N ) )  | 
						
						
							| 4 | 
							
								
							 | 
							zre | 
							 |-  ( M e. ZZ -> M e. RR )  | 
						
						
							| 5 | 
							
								
							 | 
							zre | 
							 |-  ( N e. ZZ -> N e. RR )  | 
						
						
							| 6 | 
							
								
							 | 
							lenlt | 
							 |-  ( ( M e. RR /\ N e. RR ) -> ( M <_ N <-> -. N < M ) )  | 
						
						
							| 7 | 
							
								4 5 6
							 | 
							syl2an | 
							 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M <_ N <-> -. N < M ) )  | 
						
						
							| 8 | 
							
								3 7
							 | 
							bitr2d | 
							 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( -. N < M <-> ( M ... N ) =/= (/) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							necon4bbid | 
							 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( N < M <-> ( M ... N ) = (/) ) )  |