| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							uzm1 | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑁  =  𝑀  ∨  ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							eluzp1p1 | 
							⊢ ( ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( 𝑁  −  1 )  +  1 )  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							eluzelcn | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑁  ∈  ℂ )  | 
						
						
							| 4 | 
							
								
							 | 
							ax-1cn | 
							⊢ 1  ∈  ℂ  | 
						
						
							| 5 | 
							
								
							 | 
							npcan | 
							⊢ ( ( 𝑁  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑁  −  1 )  +  1 )  =  𝑁 )  | 
						
						
							| 6 | 
							
								3 4 5
							 | 
							sylancl | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( 𝑁  −  1 )  +  1 )  =  𝑁 )  | 
						
						
							| 7 | 
							
								6
							 | 
							eleq1d | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( ( 𝑁  −  1 )  +  1 )  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ↔  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) )  | 
						
						
							| 8 | 
							
								2 7
							 | 
							imbitrid | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							orim2d | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( 𝑁  =  𝑀  ∨  ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝑁  =  𝑀  ∨  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) ) )  | 
						
						
							| 10 | 
							
								1 9
							 | 
							mpd | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑁  =  𝑀  ∨  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) )  |