Metamath Proof Explorer


Theorem eluzelcn

Description: A member of an upper set of integers is a complex number. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Assertion eluzelcn ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑁 ∈ ℂ )

Proof

Step Hyp Ref Expression
1 eluzelre ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑁 ∈ ℝ )
2 1 recnd ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑁 ∈ ℂ )