Metamath Proof Explorer


Theorem fzsuc

Description: Join a successor to the end of a finite set of sequential integers. (Contributed by NM, 19-Jul-2008) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion fzsuc
|- ( N e. ( ZZ>= ` M ) -> ( M ... ( N + 1 ) ) = ( ( M ... N ) u. { ( N + 1 ) } ) )

Proof

Step Hyp Ref Expression
1 peano2uz
 |-  ( N e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( ZZ>= ` M ) )
2 eluzfz2
 |-  ( ( N + 1 ) e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( M ... ( N + 1 ) ) )
3 1 2 syl
 |-  ( N e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( M ... ( N + 1 ) ) )
4 peano2fzr
 |-  ( ( N e. ( ZZ>= ` M ) /\ ( N + 1 ) e. ( M ... ( N + 1 ) ) ) -> N e. ( M ... ( N + 1 ) ) )
5 3 4 mpdan
 |-  ( N e. ( ZZ>= ` M ) -> N e. ( M ... ( N + 1 ) ) )
6 fzsplit
 |-  ( N e. ( M ... ( N + 1 ) ) -> ( M ... ( N + 1 ) ) = ( ( M ... N ) u. ( ( N + 1 ) ... ( N + 1 ) ) ) )
7 5 6 syl
 |-  ( N e. ( ZZ>= ` M ) -> ( M ... ( N + 1 ) ) = ( ( M ... N ) u. ( ( N + 1 ) ... ( N + 1 ) ) ) )
8 eluzelz
 |-  ( ( N + 1 ) e. ( ZZ>= ` M ) -> ( N + 1 ) e. ZZ )
9 fzsn
 |-  ( ( N + 1 ) e. ZZ -> ( ( N + 1 ) ... ( N + 1 ) ) = { ( N + 1 ) } )
10 1 8 9 3syl
 |-  ( N e. ( ZZ>= ` M ) -> ( ( N + 1 ) ... ( N + 1 ) ) = { ( N + 1 ) } )
11 10 uneq2d
 |-  ( N e. ( ZZ>= ` M ) -> ( ( M ... N ) u. ( ( N + 1 ) ... ( N + 1 ) ) ) = ( ( M ... N ) u. { ( N + 1 ) } ) )
12 7 11 eqtrd
 |-  ( N e. ( ZZ>= ` M ) -> ( M ... ( N + 1 ) ) = ( ( M ... N ) u. { ( N + 1 ) } ) )