| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eluzel2 | 
							 |-  ( N e. ( ZZ>= ` M ) -> M e. ZZ )  | 
						
						
							| 2 | 
							
								
							 | 
							uzid | 
							 |-  ( M e. ZZ -> M e. ( ZZ>= ` M ) )  | 
						
						
							| 3 | 
							
								
							 | 
							peano2uz | 
							 |-  ( M e. ( ZZ>= ` M ) -> ( M + 1 ) e. ( ZZ>= ` M ) )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							3syl | 
							 |-  ( N e. ( ZZ>= ` M ) -> ( M + 1 ) e. ( ZZ>= ` M ) )  | 
						
						
							| 5 | 
							
								
							 | 
							fzsplit2 | 
							 |-  ( ( ( M + 1 ) e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` M ) ) -> ( M ... N ) = ( ( M ... M ) u. ( ( M + 1 ) ... N ) ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							mpancom | 
							 |-  ( N e. ( ZZ>= ` M ) -> ( M ... N ) = ( ( M ... M ) u. ( ( M + 1 ) ... N ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							fzsn | 
							 |-  ( M e. ZZ -> ( M ... M ) = { M } ) | 
						
						
							| 8 | 
							
								1 7
							 | 
							syl | 
							 |-  ( N e. ( ZZ>= ` M ) -> ( M ... M ) = { M } ) | 
						
						
							| 9 | 
							
								8
							 | 
							uneq1d | 
							 |-  ( N e. ( ZZ>= ` M ) -> ( ( M ... M ) u. ( ( M + 1 ) ... N ) ) = ( { M } u. ( ( M + 1 ) ... N ) ) ) | 
						
						
							| 10 | 
							
								6 9
							 | 
							eqtrd | 
							 |-  ( N e. ( ZZ>= ` M ) -> ( M ... N ) = ( { M } u. ( ( M + 1 ) ... N ) ) ) |