| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eluzel2 | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ℤ )  | 
						
						
							| 2 | 
							
								
							 | 
							uzid | 
							⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							peano2uz | 
							⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑀  +  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							3syl | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑀  +  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							fzsplit2 | 
							⊢ ( ( ( 𝑀  +  1 )  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝑀 ... 𝑁 )  =  ( ( 𝑀 ... 𝑀 )  ∪  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							mpancom | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑀 ... 𝑁 )  =  ( ( 𝑀 ... 𝑀 )  ∪  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							fzsn | 
							⊢ ( 𝑀  ∈  ℤ  →  ( 𝑀 ... 𝑀 )  =  { 𝑀 } )  | 
						
						
							| 8 | 
							
								1 7
							 | 
							syl | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑀 ... 𝑀 )  =  { 𝑀 } )  | 
						
						
							| 9 | 
							
								8
							 | 
							uneq1d | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( 𝑀 ... 𝑀 )  ∪  ( ( 𝑀  +  1 ) ... 𝑁 ) )  =  ( { 𝑀 }  ∪  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  | 
						
						
							| 10 | 
							
								6 9
							 | 
							eqtrd | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑀 ... 𝑁 )  =  ( { 𝑀 }  ∪  ( ( 𝑀  +  1 ) ... 𝑁 ) ) )  |