| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							incom | 
							⊢ ( { 𝑀 }  ∩  ( ( 𝑀  +  1 ) ... 𝑁 ) )  =  ( ( ( 𝑀  +  1 ) ... 𝑁 )  ∩  { 𝑀 } )  | 
						
						
							| 2 | 
							
								
							 | 
							0lt1 | 
							⊢ 0  <  1  | 
						
						
							| 3 | 
							
								
							 | 
							0re | 
							⊢ 0  ∈  ℝ  | 
						
						
							| 4 | 
							
								
							 | 
							1re | 
							⊢ 1  ∈  ℝ  | 
						
						
							| 5 | 
							
								3 4
							 | 
							ltnlei | 
							⊢ ( 0  <  1  ↔  ¬  1  ≤  0 )  | 
						
						
							| 6 | 
							
								2 5
							 | 
							mpbi | 
							⊢ ¬  1  ≤  0  | 
						
						
							| 7 | 
							
								
							 | 
							eluzel2 | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ℤ )  | 
						
						
							| 8 | 
							
								7
							 | 
							zred | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ℝ )  | 
						
						
							| 9 | 
							
								
							 | 
							leaddle0 | 
							⊢ ( ( 𝑀  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( ( 𝑀  +  1 )  ≤  𝑀  ↔  1  ≤  0 ) )  | 
						
						
							| 10 | 
							
								8 4 9
							 | 
							sylancl | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( 𝑀  +  1 )  ≤  𝑀  ↔  1  ≤  0 ) )  | 
						
						
							| 11 | 
							
								6 10
							 | 
							mtbiri | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ¬  ( 𝑀  +  1 )  ≤  𝑀 )  | 
						
						
							| 12 | 
							
								11
							 | 
							intnanrd | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ¬  ( ( 𝑀  +  1 )  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							intnand | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ¬  ( ( ( 𝑀  +  1 )  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ )  ∧  ( ( 𝑀  +  1 )  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							elfz2 | 
							⊢ ( 𝑀  ∈  ( ( 𝑀  +  1 ) ... 𝑁 )  ↔  ( ( ( 𝑀  +  1 )  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ )  ∧  ( ( 𝑀  +  1 )  ≤  𝑀  ∧  𝑀  ≤  𝑁 ) ) )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							sylnibr | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ¬  𝑀  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							disjsn | 
							⊢ ( ( ( ( 𝑀  +  1 ) ... 𝑁 )  ∩  { 𝑀 } )  =  ∅  ↔  ¬  𝑀  ∈  ( ( 𝑀  +  1 ) ... 𝑁 ) )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							sylibr | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( ( 𝑀  +  1 ) ... 𝑁 )  ∩  { 𝑀 } )  =  ∅ )  | 
						
						
							| 18 | 
							
								1 17
							 | 
							eqtrid | 
							⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( { 𝑀 }  ∩  ( ( 𝑀  +  1 ) ... 𝑁 ) )  =  ∅ )  |