Description: Complex conjugate is continuous. (Contributed by Paul Chapman, 21-Oct-2007) (Revised by Mario Carneiro, 28-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cjcncf | |- * e. ( CC -cn-> CC ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cjf | |- * : CC --> CC |
|
| 2 | cjcn2 | |- ( ( x e. CC /\ y e. RR+ ) -> E. z e. RR+ A. w e. CC ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( * ` w ) - ( * ` x ) ) ) < y ) ) |
|
| 3 | 2 | rgen2 | |- A. x e. CC A. y e. RR+ E. z e. RR+ A. w e. CC ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( * ` w ) - ( * ` x ) ) ) < y ) |
| 4 | ssid | |- CC C_ CC |
|
| 5 | elcncf2 | |- ( ( CC C_ CC /\ CC C_ CC ) -> ( * e. ( CC -cn-> CC ) <-> ( * : CC --> CC /\ A. x e. CC A. y e. RR+ E. z e. RR+ A. w e. CC ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( * ` w ) - ( * ` x ) ) ) < y ) ) ) ) |
|
| 6 | 4 4 5 | mp2an | |- ( * e. ( CC -cn-> CC ) <-> ( * : CC --> CC /\ A. x e. CC A. y e. RR+ E. z e. RR+ A. w e. CC ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( * ` w ) - ( * ` x ) ) ) < y ) ) ) |
| 7 | 1 3 6 | mpbir2an | |- * e. ( CC -cn-> CC ) |