Step |
Hyp |
Ref |
Expression |
1 |
|
mulc1cncf.1 |
|- F = ( x e. CC |-> ( A x. x ) ) |
2 |
|
mulcl |
|- ( ( A e. CC /\ x e. CC ) -> ( A x. x ) e. CC ) |
3 |
2 1
|
fmptd |
|- ( A e. CC -> F : CC --> CC ) |
4 |
|
simprr |
|- ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) -> z e. RR+ ) |
5 |
|
simpl |
|- ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) -> A e. CC ) |
6 |
|
simprl |
|- ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) -> y e. CC ) |
7 |
|
mulcn2 |
|- ( ( z e. RR+ /\ A e. CC /\ y e. CC ) -> E. t e. RR+ E. w e. RR+ A. v e. CC A. u e. CC ( ( ( abs ` ( v - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) -> ( abs ` ( ( v x. u ) - ( A x. y ) ) ) < z ) ) |
8 |
4 5 6 7
|
syl3anc |
|- ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) -> E. t e. RR+ E. w e. RR+ A. v e. CC A. u e. CC ( ( ( abs ` ( v - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) -> ( abs ` ( ( v x. u ) - ( A x. y ) ) ) < z ) ) |
9 |
|
fvoveq1 |
|- ( v = A -> ( abs ` ( v - A ) ) = ( abs ` ( A - A ) ) ) |
10 |
9
|
breq1d |
|- ( v = A -> ( ( abs ` ( v - A ) ) < t <-> ( abs ` ( A - A ) ) < t ) ) |
11 |
10
|
anbi1d |
|- ( v = A -> ( ( ( abs ` ( v - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) <-> ( ( abs ` ( A - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) ) ) |
12 |
|
oveq1 |
|- ( v = A -> ( v x. u ) = ( A x. u ) ) |
13 |
12
|
fvoveq1d |
|- ( v = A -> ( abs ` ( ( v x. u ) - ( A x. y ) ) ) = ( abs ` ( ( A x. u ) - ( A x. y ) ) ) ) |
14 |
13
|
breq1d |
|- ( v = A -> ( ( abs ` ( ( v x. u ) - ( A x. y ) ) ) < z <-> ( abs ` ( ( A x. u ) - ( A x. y ) ) ) < z ) ) |
15 |
11 14
|
imbi12d |
|- ( v = A -> ( ( ( ( abs ` ( v - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) -> ( abs ` ( ( v x. u ) - ( A x. y ) ) ) < z ) <-> ( ( ( abs ` ( A - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) -> ( abs ` ( ( A x. u ) - ( A x. y ) ) ) < z ) ) ) |
16 |
15
|
ralbidv |
|- ( v = A -> ( A. u e. CC ( ( ( abs ` ( v - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) -> ( abs ` ( ( v x. u ) - ( A x. y ) ) ) < z ) <-> A. u e. CC ( ( ( abs ` ( A - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) -> ( abs ` ( ( A x. u ) - ( A x. y ) ) ) < z ) ) ) |
17 |
16
|
rspcv |
|- ( A e. CC -> ( A. v e. CC A. u e. CC ( ( ( abs ` ( v - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) -> ( abs ` ( ( v x. u ) - ( A x. y ) ) ) < z ) -> A. u e. CC ( ( ( abs ` ( A - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) -> ( abs ` ( ( A x. u ) - ( A x. y ) ) ) < z ) ) ) |
18 |
17
|
ad2antrr |
|- ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ ( t e. RR+ /\ w e. RR+ ) ) -> ( A. v e. CC A. u e. CC ( ( ( abs ` ( v - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) -> ( abs ` ( ( v x. u ) - ( A x. y ) ) ) < z ) -> A. u e. CC ( ( ( abs ` ( A - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) -> ( abs ` ( ( A x. u ) - ( A x. y ) ) ) < z ) ) ) |
19 |
|
subid |
|- ( A e. CC -> ( A - A ) = 0 ) |
20 |
19
|
ad2antrr |
|- ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ ( ( t e. RR+ /\ w e. RR+ ) /\ u e. CC ) ) -> ( A - A ) = 0 ) |
21 |
20
|
abs00bd |
|- ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ ( ( t e. RR+ /\ w e. RR+ ) /\ u e. CC ) ) -> ( abs ` ( A - A ) ) = 0 ) |
22 |
|
simprll |
|- ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ ( ( t e. RR+ /\ w e. RR+ ) /\ u e. CC ) ) -> t e. RR+ ) |
23 |
22
|
rpgt0d |
|- ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ ( ( t e. RR+ /\ w e. RR+ ) /\ u e. CC ) ) -> 0 < t ) |
24 |
21 23
|
eqbrtrd |
|- ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ ( ( t e. RR+ /\ w e. RR+ ) /\ u e. CC ) ) -> ( abs ` ( A - A ) ) < t ) |
25 |
24
|
biantrurd |
|- ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ ( ( t e. RR+ /\ w e. RR+ ) /\ u e. CC ) ) -> ( ( abs ` ( u - y ) ) < w <-> ( ( abs ` ( A - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) ) ) |
26 |
|
simprr |
|- ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ ( ( t e. RR+ /\ w e. RR+ ) /\ u e. CC ) ) -> u e. CC ) |
27 |
|
oveq2 |
|- ( x = u -> ( A x. x ) = ( A x. u ) ) |
28 |
|
ovex |
|- ( A x. u ) e. _V |
29 |
27 1 28
|
fvmpt |
|- ( u e. CC -> ( F ` u ) = ( A x. u ) ) |
30 |
26 29
|
syl |
|- ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ ( ( t e. RR+ /\ w e. RR+ ) /\ u e. CC ) ) -> ( F ` u ) = ( A x. u ) ) |
31 |
|
simplrl |
|- ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ ( ( t e. RR+ /\ w e. RR+ ) /\ u e. CC ) ) -> y e. CC ) |
32 |
|
oveq2 |
|- ( x = y -> ( A x. x ) = ( A x. y ) ) |
33 |
|
ovex |
|- ( A x. y ) e. _V |
34 |
32 1 33
|
fvmpt |
|- ( y e. CC -> ( F ` y ) = ( A x. y ) ) |
35 |
31 34
|
syl |
|- ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ ( ( t e. RR+ /\ w e. RR+ ) /\ u e. CC ) ) -> ( F ` y ) = ( A x. y ) ) |
36 |
30 35
|
oveq12d |
|- ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ ( ( t e. RR+ /\ w e. RR+ ) /\ u e. CC ) ) -> ( ( F ` u ) - ( F ` y ) ) = ( ( A x. u ) - ( A x. y ) ) ) |
37 |
36
|
fveq2d |
|- ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ ( ( t e. RR+ /\ w e. RR+ ) /\ u e. CC ) ) -> ( abs ` ( ( F ` u ) - ( F ` y ) ) ) = ( abs ` ( ( A x. u ) - ( A x. y ) ) ) ) |
38 |
37
|
breq1d |
|- ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ ( ( t e. RR+ /\ w e. RR+ ) /\ u e. CC ) ) -> ( ( abs ` ( ( F ` u ) - ( F ` y ) ) ) < z <-> ( abs ` ( ( A x. u ) - ( A x. y ) ) ) < z ) ) |
39 |
25 38
|
imbi12d |
|- ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ ( ( t e. RR+ /\ w e. RR+ ) /\ u e. CC ) ) -> ( ( ( abs ` ( u - y ) ) < w -> ( abs ` ( ( F ` u ) - ( F ` y ) ) ) < z ) <-> ( ( ( abs ` ( A - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) -> ( abs ` ( ( A x. u ) - ( A x. y ) ) ) < z ) ) ) |
40 |
39
|
anassrs |
|- ( ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ ( t e. RR+ /\ w e. RR+ ) ) /\ u e. CC ) -> ( ( ( abs ` ( u - y ) ) < w -> ( abs ` ( ( F ` u ) - ( F ` y ) ) ) < z ) <-> ( ( ( abs ` ( A - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) -> ( abs ` ( ( A x. u ) - ( A x. y ) ) ) < z ) ) ) |
41 |
40
|
ralbidva |
|- ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ ( t e. RR+ /\ w e. RR+ ) ) -> ( A. u e. CC ( ( abs ` ( u - y ) ) < w -> ( abs ` ( ( F ` u ) - ( F ` y ) ) ) < z ) <-> A. u e. CC ( ( ( abs ` ( A - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) -> ( abs ` ( ( A x. u ) - ( A x. y ) ) ) < z ) ) ) |
42 |
18 41
|
sylibrd |
|- ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ ( t e. RR+ /\ w e. RR+ ) ) -> ( A. v e. CC A. u e. CC ( ( ( abs ` ( v - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) -> ( abs ` ( ( v x. u ) - ( A x. y ) ) ) < z ) -> A. u e. CC ( ( abs ` ( u - y ) ) < w -> ( abs ` ( ( F ` u ) - ( F ` y ) ) ) < z ) ) ) |
43 |
42
|
anassrs |
|- ( ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ t e. RR+ ) /\ w e. RR+ ) -> ( A. v e. CC A. u e. CC ( ( ( abs ` ( v - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) -> ( abs ` ( ( v x. u ) - ( A x. y ) ) ) < z ) -> A. u e. CC ( ( abs ` ( u - y ) ) < w -> ( abs ` ( ( F ` u ) - ( F ` y ) ) ) < z ) ) ) |
44 |
43
|
reximdva |
|- ( ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) /\ t e. RR+ ) -> ( E. w e. RR+ A. v e. CC A. u e. CC ( ( ( abs ` ( v - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) -> ( abs ` ( ( v x. u ) - ( A x. y ) ) ) < z ) -> E. w e. RR+ A. u e. CC ( ( abs ` ( u - y ) ) < w -> ( abs ` ( ( F ` u ) - ( F ` y ) ) ) < z ) ) ) |
45 |
44
|
rexlimdva |
|- ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) -> ( E. t e. RR+ E. w e. RR+ A. v e. CC A. u e. CC ( ( ( abs ` ( v - A ) ) < t /\ ( abs ` ( u - y ) ) < w ) -> ( abs ` ( ( v x. u ) - ( A x. y ) ) ) < z ) -> E. w e. RR+ A. u e. CC ( ( abs ` ( u - y ) ) < w -> ( abs ` ( ( F ` u ) - ( F ` y ) ) ) < z ) ) ) |
46 |
8 45
|
mpd |
|- ( ( A e. CC /\ ( y e. CC /\ z e. RR+ ) ) -> E. w e. RR+ A. u e. CC ( ( abs ` ( u - y ) ) < w -> ( abs ` ( ( F ` u ) - ( F ` y ) ) ) < z ) ) |
47 |
46
|
ralrimivva |
|- ( A e. CC -> A. y e. CC A. z e. RR+ E. w e. RR+ A. u e. CC ( ( abs ` ( u - y ) ) < w -> ( abs ` ( ( F ` u ) - ( F ` y ) ) ) < z ) ) |
48 |
|
ssid |
|- CC C_ CC |
49 |
|
elcncf2 |
|- ( ( CC C_ CC /\ CC C_ CC ) -> ( F e. ( CC -cn-> CC ) <-> ( F : CC --> CC /\ A. y e. CC A. z e. RR+ E. w e. RR+ A. u e. CC ( ( abs ` ( u - y ) ) < w -> ( abs ` ( ( F ` u ) - ( F ` y ) ) ) < z ) ) ) ) |
50 |
48 48 49
|
mp2an |
|- ( F e. ( CC -cn-> CC ) <-> ( F : CC --> CC /\ A. y e. CC A. z e. RR+ E. w e. RR+ A. u e. CC ( ( abs ` ( u - y ) ) < w -> ( abs ` ( ( F ` u ) - ( F ` y ) ) ) < z ) ) ) |
51 |
3 47 50
|
sylanbrc |
|- ( A e. CC -> F e. ( CC -cn-> CC ) ) |