Description: Alternate definition of membership in a set. (Contributed by NM, 13-Aug-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clel3g | |- ( B e. V -> ( A e. B <-> E. x ( x = B /\ A e. x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 | |- ( x = B -> ( A e. x <-> A e. B ) ) |
|
| 2 | 1 | ceqsexgv | |- ( B e. V -> ( E. x ( x = B /\ A e. x ) <-> A e. B ) ) |
| 3 | 2 | bicomd | |- ( B e. V -> ( A e. B <-> E. x ( x = B /\ A e. x ) ) ) |