Description: Equality of relations implies equality of closures. (Contributed by RP, 9-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cleq1 | |- ( R = S -> |^| { r | ( R C_ r /\ ph ) } = |^| { r | ( S C_ r /\ ph ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cleq1lem | |- ( R = S -> ( ( R C_ r /\ ph ) <-> ( S C_ r /\ ph ) ) ) |
|
| 2 | 1 | abbidv | |- ( R = S -> { r | ( R C_ r /\ ph ) } = { r | ( S C_ r /\ ph ) } ) |
| 3 | 2 | inteqd | |- ( R = S -> |^| { r | ( R C_ r /\ ph ) } = |^| { r | ( S C_ r /\ ph ) } ) |