Description: Limit of the difference of two converging sequences. (Contributed by Glauco Siliprandi, 8-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climsubc1mpt.k | |- F/ k ph |
|
| climsubc1mpt.z | |- Z = ( ZZ>= ` M ) |
||
| climsubc1mpt.m | |- ( ph -> M e. ZZ ) |
||
| climsubc1mpt.b | |- ( ph -> A e. CC ) |
||
| climsubc1mpt.a | |- ( ( ph /\ k e. Z ) -> B e. CC ) |
||
| climsubc1mpt.c | |- ( ph -> ( k e. Z |-> B ) ~~> C ) |
||
| Assertion | climsubc1mpt | |- ( ph -> ( k e. Z |-> ( A - B ) ) ~~> ( A - C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climsubc1mpt.k | |- F/ k ph |
|
| 2 | climsubc1mpt.z | |- Z = ( ZZ>= ` M ) |
|
| 3 | climsubc1mpt.m | |- ( ph -> M e. ZZ ) |
|
| 4 | climsubc1mpt.b | |- ( ph -> A e. CC ) |
|
| 5 | climsubc1mpt.a | |- ( ( ph /\ k e. Z ) -> B e. CC ) |
|
| 6 | climsubc1mpt.c | |- ( ph -> ( k e. Z |-> B ) ~~> C ) |
|
| 7 | 4 | adantr | |- ( ( ph /\ k e. Z ) -> A e. CC ) |
| 8 | 3 2 4 | climconstmpt | |- ( ph -> ( k e. Z |-> A ) ~~> A ) |
| 9 | 1 2 3 7 5 8 6 | climsubmpt | |- ( ph -> ( k e. Z |-> ( A - B ) ) ~~> ( A - C ) ) |