| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fnlimfv.1 |  |-  F/_ x D | 
						
							| 2 |  | fnlimfv.2 |  |-  F/_ x F | 
						
							| 3 |  | fnlimfv.3 |  |-  G = ( x e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) | 
						
							| 4 |  | fnlimfv.4 |  |-  ( ph -> X e. D ) | 
						
							| 5 |  | nfcv |  |-  F/_ y D | 
						
							| 6 |  | nfcv |  |-  F/_ y ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) | 
						
							| 7 |  | nfcv |  |-  F/_ x ~~> | 
						
							| 8 |  | nfcv |  |-  F/_ x Z | 
						
							| 9 |  | nfcv |  |-  F/_ x m | 
						
							| 10 | 2 9 | nffv |  |-  F/_ x ( F ` m ) | 
						
							| 11 |  | nfcv |  |-  F/_ x y | 
						
							| 12 | 10 11 | nffv |  |-  F/_ x ( ( F ` m ) ` y ) | 
						
							| 13 | 8 12 | nfmpt |  |-  F/_ x ( m e. Z |-> ( ( F ` m ) ` y ) ) | 
						
							| 14 | 7 13 | nffv |  |-  F/_ x ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` y ) ) ) | 
						
							| 15 |  | fveq2 |  |-  ( x = y -> ( ( F ` m ) ` x ) = ( ( F ` m ) ` y ) ) | 
						
							| 16 | 15 | mpteq2dv |  |-  ( x = y -> ( m e. Z |-> ( ( F ` m ) ` x ) ) = ( m e. Z |-> ( ( F ` m ) ` y ) ) ) | 
						
							| 17 | 16 | fveq2d |  |-  ( x = y -> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) = ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` y ) ) ) ) | 
						
							| 18 | 1 5 6 14 17 | cbvmptf |  |-  ( x e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` x ) ) ) ) = ( y e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` y ) ) ) ) | 
						
							| 19 | 3 18 | eqtri |  |-  G = ( y e. D |-> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` y ) ) ) ) | 
						
							| 20 |  | fveq2 |  |-  ( y = X -> ( ( F ` m ) ` y ) = ( ( F ` m ) ` X ) ) | 
						
							| 21 | 20 | mpteq2dv |  |-  ( y = X -> ( m e. Z |-> ( ( F ` m ) ` y ) ) = ( m e. Z |-> ( ( F ` m ) ` X ) ) ) | 
						
							| 22 | 21 | fveq2d |  |-  ( y = X -> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` y ) ) ) = ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) ) | 
						
							| 23 |  | fvexd |  |-  ( ph -> ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) e. _V ) | 
						
							| 24 | 19 22 4 23 | fvmptd3 |  |-  ( ph -> ( G ` X ) = ( ~~> ` ( m e. Z |-> ( ( F ` m ) ` X ) ) ) ) |