| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climreclf.k |
|- F/ k ph |
| 2 |
|
climreclf.f |
|- F/_ k F |
| 3 |
|
climreclf.z |
|- Z = ( ZZ>= ` M ) |
| 4 |
|
climreclf.m |
|- ( ph -> M e. ZZ ) |
| 5 |
|
climreclf.a |
|- ( ph -> F ~~> A ) |
| 6 |
|
climreclf.r |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
| 7 |
|
nfv |
|- F/ k j e. Z |
| 8 |
1 7
|
nfan |
|- F/ k ( ph /\ j e. Z ) |
| 9 |
|
nfcv |
|- F/_ k j |
| 10 |
2 9
|
nffv |
|- F/_ k ( F ` j ) |
| 11 |
|
nfcv |
|- F/_ k RR |
| 12 |
10 11
|
nfel |
|- F/ k ( F ` j ) e. RR |
| 13 |
8 12
|
nfim |
|- F/ k ( ( ph /\ j e. Z ) -> ( F ` j ) e. RR ) |
| 14 |
|
eleq1w |
|- ( k = j -> ( k e. Z <-> j e. Z ) ) |
| 15 |
14
|
anbi2d |
|- ( k = j -> ( ( ph /\ k e. Z ) <-> ( ph /\ j e. Z ) ) ) |
| 16 |
|
fveq2 |
|- ( k = j -> ( F ` k ) = ( F ` j ) ) |
| 17 |
16
|
eleq1d |
|- ( k = j -> ( ( F ` k ) e. RR <-> ( F ` j ) e. RR ) ) |
| 18 |
15 17
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) <-> ( ( ph /\ j e. Z ) -> ( F ` j ) e. RR ) ) ) |
| 19 |
13 18 6
|
chvarfv |
|- ( ( ph /\ j e. Z ) -> ( F ` j ) e. RR ) |
| 20 |
3 4 5 19
|
climrecl |
|- ( ph -> A e. RR ) |