| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climeldmeq.z |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
climeldmeq.f |
|- ( ph -> F e. V ) |
| 3 |
|
climeldmeq.g |
|- ( ph -> G e. W ) |
| 4 |
|
climeldmeq.m |
|- ( ph -> M e. ZZ ) |
| 5 |
|
climeldmeq.e |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( G ` k ) ) |
| 6 |
3
|
adantr |
|- ( ( ph /\ F e. dom ~~> ) -> G e. W ) |
| 7 |
|
fvexd |
|- ( ( ph /\ F e. dom ~~> ) -> ( ~~> ` F ) e. _V ) |
| 8 |
|
climdm |
|- ( F e. dom ~~> <-> F ~~> ( ~~> ` F ) ) |
| 9 |
8
|
a1i |
|- ( ph -> ( F e. dom ~~> <-> F ~~> ( ~~> ` F ) ) ) |
| 10 |
9
|
biimpa |
|- ( ( ph /\ F e. dom ~~> ) -> F ~~> ( ~~> ` F ) ) |
| 11 |
1 2 3 4 5
|
climeq |
|- ( ph -> ( F ~~> ( ~~> ` F ) <-> G ~~> ( ~~> ` F ) ) ) |
| 12 |
11
|
adantr |
|- ( ( ph /\ F e. dom ~~> ) -> ( F ~~> ( ~~> ` F ) <-> G ~~> ( ~~> ` F ) ) ) |
| 13 |
10 12
|
mpbid |
|- ( ( ph /\ F e. dom ~~> ) -> G ~~> ( ~~> ` F ) ) |
| 14 |
|
breldmg |
|- ( ( G e. W /\ ( ~~> ` F ) e. _V /\ G ~~> ( ~~> ` F ) ) -> G e. dom ~~> ) |
| 15 |
6 7 13 14
|
syl3anc |
|- ( ( ph /\ F e. dom ~~> ) -> G e. dom ~~> ) |
| 16 |
15
|
ex |
|- ( ph -> ( F e. dom ~~> -> G e. dom ~~> ) ) |
| 17 |
2
|
adantr |
|- ( ( ph /\ G e. dom ~~> ) -> F e. V ) |
| 18 |
|
fvexd |
|- ( ( ph /\ G e. dom ~~> ) -> ( ~~> ` G ) e. _V ) |
| 19 |
|
climdm |
|- ( G e. dom ~~> <-> G ~~> ( ~~> ` G ) ) |
| 20 |
19
|
biimpi |
|- ( G e. dom ~~> -> G ~~> ( ~~> ` G ) ) |
| 21 |
20
|
adantl |
|- ( ( ph /\ G e. dom ~~> ) -> G ~~> ( ~~> ` G ) ) |
| 22 |
5
|
eqcomd |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) = ( F ` k ) ) |
| 23 |
1 3 2 4 22
|
climeq |
|- ( ph -> ( G ~~> ( ~~> ` G ) <-> F ~~> ( ~~> ` G ) ) ) |
| 24 |
23
|
adantr |
|- ( ( ph /\ G e. dom ~~> ) -> ( G ~~> ( ~~> ` G ) <-> F ~~> ( ~~> ` G ) ) ) |
| 25 |
21 24
|
mpbid |
|- ( ( ph /\ G e. dom ~~> ) -> F ~~> ( ~~> ` G ) ) |
| 26 |
|
breldmg |
|- ( ( F e. V /\ ( ~~> ` G ) e. _V /\ F ~~> ( ~~> ` G ) ) -> F e. dom ~~> ) |
| 27 |
17 18 25 26
|
syl3anc |
|- ( ( ph /\ G e. dom ~~> ) -> F e. dom ~~> ) |
| 28 |
27
|
ex |
|- ( ph -> ( G e. dom ~~> -> F e. dom ~~> ) ) |
| 29 |
16 28
|
impbid |
|- ( ph -> ( F e. dom ~~> <-> G e. dom ~~> ) ) |