Metamath Proof Explorer


Theorem climeldmeq

Description: Two functions that are eventually equal, either both are convergent or both are divergent. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses climeldmeq.z Z=M
climeldmeq.f φFV
climeldmeq.g φGW
climeldmeq.m φM
climeldmeq.e φkZFk=Gk
Assertion climeldmeq φFdomGdom

Proof

Step Hyp Ref Expression
1 climeldmeq.z Z=M
2 climeldmeq.f φFV
3 climeldmeq.g φGW
4 climeldmeq.m φM
5 climeldmeq.e φkZFk=Gk
6 3 adantr φFdomGW
7 fvexd φFdomFV
8 climdm FdomFF
9 8 a1i φFdomFF
10 9 biimpa φFdomFF
11 1 2 3 4 5 climeq φFFGF
12 11 adantr φFdomFFGF
13 10 12 mpbid φFdomGF
14 breldmg GWFVGFGdom
15 6 7 13 14 syl3anc φFdomGdom
16 15 ex φFdomGdom
17 2 adantr φGdomFV
18 fvexd φGdomGV
19 climdm GdomGG
20 19 biimpi GdomGG
21 20 adantl φGdomGG
22 5 eqcomd φkZGk=Fk
23 1 3 2 4 22 climeq φGGFG
24 23 adantr φGdomGGFG
25 21 24 mpbid φGdomFG
26 breldmg FVGVFGFdom
27 17 18 25 26 syl3anc φGdomFdom
28 27 ex φGdomFdom
29 16 28 impbid φFdomGdom