Metamath Proof Explorer


Theorem climreclf

Description: The limit of a convergent real sequence is real. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses climreclf.k kφ
climreclf.f _kF
climreclf.z Z=M
climreclf.m φM
climreclf.a φFA
climreclf.r φkZFk
Assertion climreclf φA

Proof

Step Hyp Ref Expression
1 climreclf.k kφ
2 climreclf.f _kF
3 climreclf.z Z=M
4 climreclf.m φM
5 climreclf.a φFA
6 climreclf.r φkZFk
7 nfv kjZ
8 1 7 nfan kφjZ
9 nfcv _kj
10 2 9 nffv _kFj
11 nfcv _k
12 10 11 nfel kFj
13 8 12 nfim kφjZFj
14 eleq1w k=jkZjZ
15 14 anbi2d k=jφkZφjZ
16 fveq2 k=jFk=Fj
17 16 eleq1d k=jFkFj
18 15 17 imbi12d k=jφkZFkφjZFj
19 13 18 6 chvarfv φjZFj
20 3 4 5 19 climrecl φA