Metamath Proof Explorer


Theorem climrecl

Description: The limit of a convergent real sequence is real. Corollary 12-2.5 of Gleason p. 172. (Contributed by NM, 10-Sep-2005) (Proof shortened by Mario Carneiro, 10-May-2016)

Ref Expression
Hypotheses climshft2.1 Z=M
climshft2.2 φM
climrecl.3 φFA
climrecl.4 φkZFk
Assertion climrecl φA

Proof

Step Hyp Ref Expression
1 climshft2.1 Z=M
2 climshft2.2 φM
3 climrecl.3 φFA
4 climrecl.4 φkZFk
5 1 uzsup MsupZ*<=+∞
6 2 5 syl φsupZ*<=+∞
7 climrel Rel
8 7 brrelex1i FAFV
9 3 8 syl φFV
10 eqid kZFk=kZFk
11 1 10 climmpt MFVFAkZFkA
12 2 9 11 syl2anc φFAkZFkA
13 3 12 mpbid φkZFkA
14 4 recnd φkZFk
15 14 fmpttd φkZFk:Z
16 1 2 15 rlimclim φkZFkAkZFkA
17 13 16 mpbird φkZFkA
18 6 17 4 rlimrecl φA