Metamath Proof Explorer


Theorem rlimrecl

Description: The limit of a real sequence is real. (Contributed by Mario Carneiro, 9-May-2016)

Ref Expression
Hypotheses rlimcld2.1 φsupA*<=+∞
rlimcld2.2 φxABC
rlimrecl.3 φxAB
Assertion rlimrecl φC

Proof

Step Hyp Ref Expression
1 rlimcld2.1 φsupA*<=+∞
2 rlimcld2.2 φxABC
3 rlimrecl.3 φxAB
4 ax-resscn
5 4 a1i φ
6 eldifi yy
7 6 adantl φyy
8 7 imcld φyy
9 8 recnd φyy
10 eldifn y¬y
11 10 adantl φy¬y
12 reim0b yyy=0
13 7 12 syl φyyy=0
14 13 necon3bbid φy¬yy0
15 11 14 mpbid φyy0
16 9 15 absrpcld φyy+
17 7 adantr φyzy
18 simpr φyzz
19 18 recnd φyzz
20 17 19 subcld φyzyz
21 absimle yzyzyz
22 20 21 syl φyzyzyz
23 17 19 imsubd φyzyz=yz
24 reim0 zz=0
25 24 adantl φyzz=0
26 25 oveq2d φyzyz=y0
27 9 adantr φyzy
28 27 subid1d φyzy0=y
29 23 26 28 3eqtrrd φyzy=yz
30 29 fveq2d φyzy=yz
31 19 17 abssubd φyzzy=yz
32 22 30 31 3brtr4d φyzyzy
33 1 2 5 16 32 3 rlimcld2 φC