Description: The limit of a real sequence is real. (Contributed by Mario Carneiro, 9-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rlimcld2.1 | |
|
rlimcld2.2 | |
||
rlimrecl.3 | |
||
Assertion | rlimrecl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimcld2.1 | |
|
2 | rlimcld2.2 | |
|
3 | rlimrecl.3 | |
|
4 | ax-resscn | |
|
5 | 4 | a1i | |
6 | eldifi | |
|
7 | 6 | adantl | |
8 | 7 | imcld | |
9 | 8 | recnd | |
10 | eldifn | |
|
11 | 10 | adantl | |
12 | reim0b | |
|
13 | 7 12 | syl | |
14 | 13 | necon3bbid | |
15 | 11 14 | mpbid | |
16 | 9 15 | absrpcld | |
17 | 7 | adantr | |
18 | simpr | |
|
19 | 18 | recnd | |
20 | 17 19 | subcld | |
21 | absimle | |
|
22 | 20 21 | syl | |
23 | 17 19 | imsubd | |
24 | reim0 | |
|
25 | 24 | adantl | |
26 | 25 | oveq2d | |
27 | 9 | adantr | |
28 | 27 | subid1d | |
29 | 23 26 28 | 3eqtrrd | |
30 | 29 | fveq2d | |
31 | 19 17 | abssubd | |
32 | 22 30 31 | 3brtr4d | |
33 | 1 2 5 16 32 3 | rlimcld2 | |