Metamath Proof Explorer


Theorem rlimge0

Description: The limit of a sequence of nonnegative reals is nonnegative. (Contributed by Mario Carneiro, 10-May-2016)

Ref Expression
Hypotheses rlimcld2.1 φsupA*<=+∞
rlimcld2.2 φxABC
rlimrecl.3 φxAB
rlimge0.4 φxA0B
Assertion rlimge0 φ0C

Proof

Step Hyp Ref Expression
1 rlimcld2.1 φsupA*<=+∞
2 rlimcld2.2 φxABC
3 rlimrecl.3 φxAB
4 rlimge0.4 φxA0B
5 3 recnd φxAB
6 3 rered φxAB=B
7 4 6 breqtrrd φxA0B
8 1 2 5 7 rlimrege0 φ0C
9 1 2 3 rlimrecl φC
10 9 rered φC=C
11 8 10 breqtrd φ0C