Metamath Proof Explorer


Theorem rlimrege0

Description: The limit of a sequence of complex numbers with nonnegative real part has nonnegative real part. (Contributed by Mario Carneiro, 10-May-2016)

Ref Expression
Hypotheses rlimcld2.1 φsupA*<=+∞
rlimcld2.2 φxABC
rlimrege0.4 φxAB
rlimrege0.5 φxA0B
Assertion rlimrege0 φ0C

Proof

Step Hyp Ref Expression
1 rlimcld2.1 φsupA*<=+∞
2 rlimcld2.2 φxABC
3 rlimrege0.4 φxAB
4 rlimrege0.5 φxA0B
5 ssrab2 w|0w
6 5 a1i φw|0w
7 eldifi yw|0wy
8 7 adantl φyw|0wy
9 8 recld φyw|0wy
10 fveq2 w=yw=y
11 10 breq2d w=y0w0y
12 11 notbid w=y¬0w¬0y
13 notrab w|0w=w|¬0w
14 12 13 elrab2 yw|0wy¬0y
15 14 simprbi yw|0w¬0y
16 15 adantl φyw|0w¬0y
17 0re 0
18 ltnle y0y<0¬0y
19 9 17 18 sylancl φyw|0wy<0¬0y
20 16 19 mpbird φyw|0wy<0
21 9 20 negelrpd φyw|0wy+
22 9 renegcld φyw|0wy
23 22 adantr φyw|0wzw|0wy
24 elrabi zw|0wz
25 24 adantl φyw|0wzw|0wz
26 8 adantr φyw|0wzw|0wy
27 25 26 subcld φyw|0wzw|0wzy
28 27 recld φyw|0wzw|0wzy
29 27 abscld φyw|0wzw|0wzy
30 0red φyw|0wzw|0w0
31 25 recld φyw|0wzw|0wz
32 26 recld φyw|0wzw|0wy
33 fveq2 w=zw=z
34 33 breq2d w=z0w0z
35 34 elrab zw|0wz0z
36 35 simprbi zw|0w0z
37 36 adantl φyw|0wzw|0w0z
38 30 31 32 37 lesub1dd φyw|0wzw|0w0yzy
39 df-neg y=0y
40 39 a1i φyw|0wzw|0wy=0y
41 25 26 resubd φyw|0wzw|0wzy=zy
42 38 40 41 3brtr4d φyw|0wzw|0wyzy
43 27 releabsd φyw|0wzw|0wzyzy
44 23 28 29 42 43 letrd φyw|0wzw|0wyzy
45 fveq2 w=Bw=B
46 45 breq2d w=B0w0B
47 46 3 4 elrabd φxABw|0w
48 1 2 6 21 44 47 rlimcld2 φCw|0w
49 fveq2 w=Cw=C
50 49 breq2d w=C0w0C
51 50 elrab Cw|0wC0C
52 51 simprbi Cw|0w0C
53 48 52 syl φ0C