Metamath Proof Explorer


Theorem rlimcld2

Description: If D is a closed set in the topology of the complex numbers (stated here in basic form), and all the elements of the sequence lie in D , then the limit of the sequence also lies in D . (Contributed by Mario Carneiro, 10-May-2016)

Ref Expression
Hypotheses rlimcld2.1 φ sup A * < = +∞
rlimcld2.2 φ x A B C
rlimcld2.3 φ D
rlimcld2.4 φ y D R +
rlimcld2.5 φ y D z D R z y
rlimcld2.6 φ x A B D
Assertion rlimcld2 φ C D

Proof

Step Hyp Ref Expression
1 rlimcld2.1 φ sup A * < = +∞
2 rlimcld2.2 φ x A B C
3 rlimcld2.3 φ D
4 rlimcld2.4 φ y D R +
5 rlimcld2.5 φ y D z D R z y
6 rlimcld2.6 φ x A B D
7 6 ralrimiva φ x A B D
8 7 adantr φ ¬ C D x A B D
9 2 adantr φ ¬ C D x A B C
10 rlimcl x A B C C
11 9 10 syl φ ¬ C D C
12 simpr φ ¬ C D ¬ C D
13 11 12 eldifd φ ¬ C D C D
14 4 ralrimiva φ y D R +
15 14 adantr φ ¬ C D y D R +
16 nfcsb1v _ y C / y R
17 16 nfel1 y C / y R +
18 csbeq1a y = C R = C / y R
19 18 eleq1d y = C R + C / y R +
20 17 19 rspc C D y D R + C / y R +
21 13 15 20 sylc φ ¬ C D C / y R +
22 8 21 9 rlimi φ ¬ C D r x A r x B C < C / y R
23 21 ad2antrr φ ¬ C D r x A C / y R +
24 23 rpred φ ¬ C D r x A C / y R
25 3 ad3antrrr φ ¬ C D r x A D
26 6 ad4ant14 φ ¬ C D r x A B D
27 25 26 sseldd φ ¬ C D r x A B
28 11 ad2antrr φ ¬ C D r x A C
29 27 28 subcld φ ¬ C D r x A B C
30 29 abscld φ ¬ C D r x A B C
31 5 ralrimiva φ y D z D R z y
32 31 ralrimiva φ y D z D R z y
33 32 adantr φ ¬ C D y D z D R z y
34 nfcv _ y D
35 nfcv _ y
36 nfcv _ y z C
37 16 35 36 nfbr y C / y R z C
38 34 37 nfralw y z D C / y R z C
39 oveq2 y = C z y = z C
40 39 fveq2d y = C z y = z C
41 18 40 breq12d y = C R z y C / y R z C
42 41 ralbidv y = C z D R z y z D C / y R z C
43 38 42 rspc C D y D z D R z y z D C / y R z C
44 13 33 43 sylc φ ¬ C D z D C / y R z C
45 44 ad2antrr φ ¬ C D r x A z D C / y R z C
46 fvoveq1 z = B z C = B C
47 46 breq2d z = B C / y R z C C / y R B C
48 47 rspcv B D z D C / y R z C C / y R B C
49 26 45 48 sylc φ ¬ C D r x A C / y R B C
50 24 30 49 lensymd φ ¬ C D r x A ¬ B C < C / y R
51 id r x B C < C / y R r x B C < C / y R
52 51 imp r x B C < C / y R r x B C < C / y R
53 50 52 nsyl φ ¬ C D r x A ¬ r x B C < C / y R r x
54 53 nrexdv φ ¬ C D r ¬ x A r x B C < C / y R r x
55 eqid x A B = x A B
56 55 6 dmmptd φ dom x A B = A
57 rlimss x A B C dom x A B
58 2 57 syl φ dom x A B
59 56 58 eqsstrrd φ A
60 ressxr *
61 59 60 sstrdi φ A *
62 supxrunb1 A * r x A r x sup A * < = +∞
63 61 62 syl φ r x A r x sup A * < = +∞
64 1 63 mpbird φ r x A r x
65 64 adantr φ ¬ C D r x A r x
66 65 r19.21bi φ ¬ C D r x A r x
67 r19.29 x A r x B C < C / y R x A r x x A r x B C < C / y R r x
68 67 expcom x A r x x A r x B C < C / y R x A r x B C < C / y R r x
69 66 68 syl φ ¬ C D r x A r x B C < C / y R x A r x B C < C / y R r x
70 54 69 mtod φ ¬ C D r ¬ x A r x B C < C / y R
71 70 nrexdv φ ¬ C D ¬ r x A r x B C < C / y R
72 22 71 condan φ C D