Metamath Proof Explorer


Definition df-rlim

Description: Define the limit relation for partial functions on the reals. See rlim for its relational expression. (Contributed by Mario Carneiro, 16-Sep-2014)

Ref Expression
Assertion df-rlim =fx|f𝑝𝑚xy+zwdomfzwfwx<y

Detailed syntax breakdown

Step Hyp Ref Expression
0 crli class
1 vf setvarf
2 vx setvarx
3 1 cv setvarf
4 cc class
5 cpm class𝑝𝑚
6 cr class
7 4 6 5 co class𝑝𝑚
8 3 7 wcel wfff𝑝𝑚
9 2 cv setvarx
10 9 4 wcel wffx
11 8 10 wa wfff𝑝𝑚x
12 vy setvary
13 crp class+
14 vz setvarz
15 vw setvarw
16 3 cdm classdomf
17 14 cv setvarz
18 cle class
19 15 cv setvarw
20 17 19 18 wbr wffzw
21 cabs classabs
22 19 3 cfv classfw
23 cmin class
24 22 9 23 co classfwx
25 24 21 cfv classfwx
26 clt class<
27 12 cv setvary
28 25 27 26 wbr wfffwx<y
29 20 28 wi wffzwfwx<y
30 29 15 16 wral wffwdomfzwfwx<y
31 30 14 6 wrex wffzwdomfzwfwx<y
32 31 12 13 wral wffy+zwdomfzwfwx<y
33 11 32 wa wfff𝑝𝑚xy+zwdomfzwfwx<y
34 33 1 2 copab classfx|f𝑝𝑚xy+zwdomfzwfwx<y
35 0 34 wceq wff=fx|f𝑝𝑚xy+zwdomfzwfwx<y