Metamath Proof Explorer


Definition df-rlim

Description: Define the limit relation for partial functions on the reals. See rlim for its relational expression. (Contributed by Mario Carneiro, 16-Sep-2014)

Ref Expression
Assertion df-rlim 𝑟 = { ⟨ 𝑓 , 𝑥 ⟩ ∣ ( ( 𝑓 ∈ ( ℂ ↑pm ℝ ) ∧ 𝑥 ∈ ℂ ) ∧ ∀ 𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀ 𝑤 ∈ dom 𝑓 ( 𝑧𝑤 → ( abs ‘ ( ( 𝑓𝑤 ) − 𝑥 ) ) < 𝑦 ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 crli 𝑟
1 vf 𝑓
2 vx 𝑥
3 1 cv 𝑓
4 cc
5 cpm pm
6 cr
7 4 6 5 co ( ℂ ↑pm ℝ )
8 3 7 wcel 𝑓 ∈ ( ℂ ↑pm ℝ )
9 2 cv 𝑥
10 9 4 wcel 𝑥 ∈ ℂ
11 8 10 wa ( 𝑓 ∈ ( ℂ ↑pm ℝ ) ∧ 𝑥 ∈ ℂ )
12 vy 𝑦
13 crp +
14 vz 𝑧
15 vw 𝑤
16 3 cdm dom 𝑓
17 14 cv 𝑧
18 cle
19 15 cv 𝑤
20 17 19 18 wbr 𝑧𝑤
21 cabs abs
22 19 3 cfv ( 𝑓𝑤 )
23 cmin
24 22 9 23 co ( ( 𝑓𝑤 ) − 𝑥 )
25 24 21 cfv ( abs ‘ ( ( 𝑓𝑤 ) − 𝑥 ) )
26 clt <
27 12 cv 𝑦
28 25 27 26 wbr ( abs ‘ ( ( 𝑓𝑤 ) − 𝑥 ) ) < 𝑦
29 20 28 wi ( 𝑧𝑤 → ( abs ‘ ( ( 𝑓𝑤 ) − 𝑥 ) ) < 𝑦 )
30 29 15 16 wral 𝑤 ∈ dom 𝑓 ( 𝑧𝑤 → ( abs ‘ ( ( 𝑓𝑤 ) − 𝑥 ) ) < 𝑦 )
31 30 14 6 wrex 𝑧 ∈ ℝ ∀ 𝑤 ∈ dom 𝑓 ( 𝑧𝑤 → ( abs ‘ ( ( 𝑓𝑤 ) − 𝑥 ) ) < 𝑦 )
32 31 12 13 wral 𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀ 𝑤 ∈ dom 𝑓 ( 𝑧𝑤 → ( abs ‘ ( ( 𝑓𝑤 ) − 𝑥 ) ) < 𝑦 )
33 11 32 wa ( ( 𝑓 ∈ ( ℂ ↑pm ℝ ) ∧ 𝑥 ∈ ℂ ) ∧ ∀ 𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀ 𝑤 ∈ dom 𝑓 ( 𝑧𝑤 → ( abs ‘ ( ( 𝑓𝑤 ) − 𝑥 ) ) < 𝑦 ) )
34 33 1 2 copab { ⟨ 𝑓 , 𝑥 ⟩ ∣ ( ( 𝑓 ∈ ( ℂ ↑pm ℝ ) ∧ 𝑥 ∈ ℂ ) ∧ ∀ 𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀ 𝑤 ∈ dom 𝑓 ( 𝑧𝑤 → ( abs ‘ ( ( 𝑓𝑤 ) − 𝑥 ) ) < 𝑦 ) ) }
35 0 34 wceq 𝑟 = { ⟨ 𝑓 , 𝑥 ⟩ ∣ ( ( 𝑓 ∈ ( ℂ ↑pm ℝ ) ∧ 𝑥 ∈ ℂ ) ∧ ∀ 𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀ 𝑤 ∈ dom 𝑓 ( 𝑧𝑤 → ( abs ‘ ( ( 𝑓𝑤 ) − 𝑥 ) ) < 𝑦 ) ) }