Step |
Hyp |
Ref |
Expression |
0 |
|
crli |
⊢ ⇝𝑟 |
1 |
|
vf |
⊢ 𝑓 |
2 |
|
vx |
⊢ 𝑥 |
3 |
1
|
cv |
⊢ 𝑓 |
4 |
|
cc |
⊢ ℂ |
5 |
|
cpm |
⊢ ↑pm |
6 |
|
cr |
⊢ ℝ |
7 |
4 6 5
|
co |
⊢ ( ℂ ↑pm ℝ ) |
8 |
3 7
|
wcel |
⊢ 𝑓 ∈ ( ℂ ↑pm ℝ ) |
9 |
2
|
cv |
⊢ 𝑥 |
10 |
9 4
|
wcel |
⊢ 𝑥 ∈ ℂ |
11 |
8 10
|
wa |
⊢ ( 𝑓 ∈ ( ℂ ↑pm ℝ ) ∧ 𝑥 ∈ ℂ ) |
12 |
|
vy |
⊢ 𝑦 |
13 |
|
crp |
⊢ ℝ+ |
14 |
|
vz |
⊢ 𝑧 |
15 |
|
vw |
⊢ 𝑤 |
16 |
3
|
cdm |
⊢ dom 𝑓 |
17 |
14
|
cv |
⊢ 𝑧 |
18 |
|
cle |
⊢ ≤ |
19 |
15
|
cv |
⊢ 𝑤 |
20 |
17 19 18
|
wbr |
⊢ 𝑧 ≤ 𝑤 |
21 |
|
cabs |
⊢ abs |
22 |
19 3
|
cfv |
⊢ ( 𝑓 ‘ 𝑤 ) |
23 |
|
cmin |
⊢ − |
24 |
22 9 23
|
co |
⊢ ( ( 𝑓 ‘ 𝑤 ) − 𝑥 ) |
25 |
24 21
|
cfv |
⊢ ( abs ‘ ( ( 𝑓 ‘ 𝑤 ) − 𝑥 ) ) |
26 |
|
clt |
⊢ < |
27 |
12
|
cv |
⊢ 𝑦 |
28 |
25 27 26
|
wbr |
⊢ ( abs ‘ ( ( 𝑓 ‘ 𝑤 ) − 𝑥 ) ) < 𝑦 |
29 |
20 28
|
wi |
⊢ ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝑓 ‘ 𝑤 ) − 𝑥 ) ) < 𝑦 ) |
30 |
29 15 16
|
wral |
⊢ ∀ 𝑤 ∈ dom 𝑓 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝑓 ‘ 𝑤 ) − 𝑥 ) ) < 𝑦 ) |
31 |
30 14 6
|
wrex |
⊢ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ dom 𝑓 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝑓 ‘ 𝑤 ) − 𝑥 ) ) < 𝑦 ) |
32 |
31 12 13
|
wral |
⊢ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ dom 𝑓 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝑓 ‘ 𝑤 ) − 𝑥 ) ) < 𝑦 ) |
33 |
11 32
|
wa |
⊢ ( ( 𝑓 ∈ ( ℂ ↑pm ℝ ) ∧ 𝑥 ∈ ℂ ) ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ dom 𝑓 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝑓 ‘ 𝑤 ) − 𝑥 ) ) < 𝑦 ) ) |
34 |
33 1 2
|
copab |
⊢ { 〈 𝑓 , 𝑥 〉 ∣ ( ( 𝑓 ∈ ( ℂ ↑pm ℝ ) ∧ 𝑥 ∈ ℂ ) ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ dom 𝑓 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝑓 ‘ 𝑤 ) − 𝑥 ) ) < 𝑦 ) ) } |
35 |
0 34
|
wceq |
⊢ ⇝𝑟 = { 〈 𝑓 , 𝑥 〉 ∣ ( ( 𝑓 ∈ ( ℂ ↑pm ℝ ) ∧ 𝑥 ∈ ℂ ) ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ dom 𝑓 ( 𝑧 ≤ 𝑤 → ( abs ‘ ( ( 𝑓 ‘ 𝑤 ) − 𝑥 ) ) < 𝑦 ) ) } |