| Step |
Hyp |
Ref |
Expression |
| 0 |
|
crli |
|- ~~>r |
| 1 |
|
vf |
|- f |
| 2 |
|
vx |
|- x |
| 3 |
1
|
cv |
|- f |
| 4 |
|
cc |
|- CC |
| 5 |
|
cpm |
|- ^pm |
| 6 |
|
cr |
|- RR |
| 7 |
4 6 5
|
co |
|- ( CC ^pm RR ) |
| 8 |
3 7
|
wcel |
|- f e. ( CC ^pm RR ) |
| 9 |
2
|
cv |
|- x |
| 10 |
9 4
|
wcel |
|- x e. CC |
| 11 |
8 10
|
wa |
|- ( f e. ( CC ^pm RR ) /\ x e. CC ) |
| 12 |
|
vy |
|- y |
| 13 |
|
crp |
|- RR+ |
| 14 |
|
vz |
|- z |
| 15 |
|
vw |
|- w |
| 16 |
3
|
cdm |
|- dom f |
| 17 |
14
|
cv |
|- z |
| 18 |
|
cle |
|- <_ |
| 19 |
15
|
cv |
|- w |
| 20 |
17 19 18
|
wbr |
|- z <_ w |
| 21 |
|
cabs |
|- abs |
| 22 |
19 3
|
cfv |
|- ( f ` w ) |
| 23 |
|
cmin |
|- - |
| 24 |
22 9 23
|
co |
|- ( ( f ` w ) - x ) |
| 25 |
24 21
|
cfv |
|- ( abs ` ( ( f ` w ) - x ) ) |
| 26 |
|
clt |
|- < |
| 27 |
12
|
cv |
|- y |
| 28 |
25 27 26
|
wbr |
|- ( abs ` ( ( f ` w ) - x ) ) < y |
| 29 |
20 28
|
wi |
|- ( z <_ w -> ( abs ` ( ( f ` w ) - x ) ) < y ) |
| 30 |
29 15 16
|
wral |
|- A. w e. dom f ( z <_ w -> ( abs ` ( ( f ` w ) - x ) ) < y ) |
| 31 |
30 14 6
|
wrex |
|- E. z e. RR A. w e. dom f ( z <_ w -> ( abs ` ( ( f ` w ) - x ) ) < y ) |
| 32 |
31 12 13
|
wral |
|- A. y e. RR+ E. z e. RR A. w e. dom f ( z <_ w -> ( abs ` ( ( f ` w ) - x ) ) < y ) |
| 33 |
11 32
|
wa |
|- ( ( f e. ( CC ^pm RR ) /\ x e. CC ) /\ A. y e. RR+ E. z e. RR A. w e. dom f ( z <_ w -> ( abs ` ( ( f ` w ) - x ) ) < y ) ) |
| 34 |
33 1 2
|
copab |
|- { <. f , x >. | ( ( f e. ( CC ^pm RR ) /\ x e. CC ) /\ A. y e. RR+ E. z e. RR A. w e. dom f ( z <_ w -> ( abs ` ( ( f ` w ) - x ) ) < y ) ) } |
| 35 |
0 34
|
wceq |
|- ~~>r = { <. f , x >. | ( ( f e. ( CC ^pm RR ) /\ x e. CC ) /\ A. y e. RR+ E. z e. RR A. w e. dom f ( z <_ w -> ( abs ` ( ( f ` w ) - x ) ) < y ) ) } |