Step |
Hyp |
Ref |
Expression |
0 |
|
crli |
|- ~~>r |
1 |
|
vf |
|- f |
2 |
|
vx |
|- x |
3 |
1
|
cv |
|- f |
4 |
|
cc |
|- CC |
5 |
|
cpm |
|- ^pm |
6 |
|
cr |
|- RR |
7 |
4 6 5
|
co |
|- ( CC ^pm RR ) |
8 |
3 7
|
wcel |
|- f e. ( CC ^pm RR ) |
9 |
2
|
cv |
|- x |
10 |
9 4
|
wcel |
|- x e. CC |
11 |
8 10
|
wa |
|- ( f e. ( CC ^pm RR ) /\ x e. CC ) |
12 |
|
vy |
|- y |
13 |
|
crp |
|- RR+ |
14 |
|
vz |
|- z |
15 |
|
vw |
|- w |
16 |
3
|
cdm |
|- dom f |
17 |
14
|
cv |
|- z |
18 |
|
cle |
|- <_ |
19 |
15
|
cv |
|- w |
20 |
17 19 18
|
wbr |
|- z <_ w |
21 |
|
cabs |
|- abs |
22 |
19 3
|
cfv |
|- ( f ` w ) |
23 |
|
cmin |
|- - |
24 |
22 9 23
|
co |
|- ( ( f ` w ) - x ) |
25 |
24 21
|
cfv |
|- ( abs ` ( ( f ` w ) - x ) ) |
26 |
|
clt |
|- < |
27 |
12
|
cv |
|- y |
28 |
25 27 26
|
wbr |
|- ( abs ` ( ( f ` w ) - x ) ) < y |
29 |
20 28
|
wi |
|- ( z <_ w -> ( abs ` ( ( f ` w ) - x ) ) < y ) |
30 |
29 15 16
|
wral |
|- A. w e. dom f ( z <_ w -> ( abs ` ( ( f ` w ) - x ) ) < y ) |
31 |
30 14 6
|
wrex |
|- E. z e. RR A. w e. dom f ( z <_ w -> ( abs ` ( ( f ` w ) - x ) ) < y ) |
32 |
31 12 13
|
wral |
|- A. y e. RR+ E. z e. RR A. w e. dom f ( z <_ w -> ( abs ` ( ( f ` w ) - x ) ) < y ) |
33 |
11 32
|
wa |
|- ( ( f e. ( CC ^pm RR ) /\ x e. CC ) /\ A. y e. RR+ E. z e. RR A. w e. dom f ( z <_ w -> ( abs ` ( ( f ` w ) - x ) ) < y ) ) |
34 |
33 1 2
|
copab |
|- { <. f , x >. | ( ( f e. ( CC ^pm RR ) /\ x e. CC ) /\ A. y e. RR+ E. z e. RR A. w e. dom f ( z <_ w -> ( abs ` ( ( f ` w ) - x ) ) < y ) ) } |
35 |
0 34
|
wceq |
|- ~~>r = { <. f , x >. | ( ( f e. ( CC ^pm RR ) /\ x e. CC ) /\ A. y e. RR+ E. z e. RR A. w e. dom f ( z <_ w -> ( abs ` ( ( f ` w ) - x ) ) < y ) ) } |