Metamath Proof Explorer


Theorem dmmptd

Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses dmmptd.a A=xBC
dmmptd.c φxBCV
Assertion dmmptd φdomA=B

Proof

Step Hyp Ref Expression
1 dmmptd.a A=xBC
2 dmmptd.c φxBCV
3 1 dmmpt domA=xB|CV
4 2 elexd φxBCV
5 4 ralrimiva φxBCV
6 rabid2 B=xB|CVxBCV
7 5 6 sylibr φB=xB|CV
8 3 7 eqtr4id φdomA=B