Metamath Proof Explorer


Theorem mptun

Description: Union of mappings which are mutually compatible. (Contributed by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion mptun xABC=xACxBC

Proof

Step Hyp Ref Expression
1 df-mpt xABC=xy|xABy=C
2 df-mpt xAC=xy|xAy=C
3 df-mpt xBC=xy|xBy=C
4 2 3 uneq12i xACxBC=xy|xAy=Cxy|xBy=C
5 elun xABxAxB
6 5 anbi1i xABy=CxAxBy=C
7 andir xAxBy=CxAy=CxBy=C
8 6 7 bitri xABy=CxAy=CxBy=C
9 8 opabbii xy|xABy=C=xy|xAy=CxBy=C
10 unopab xy|xAy=Cxy|xBy=C=xy|xAy=CxBy=C
11 9 10 eqtr4i xy|xABy=C=xy|xAy=Cxy|xBy=C
12 4 11 eqtr4i xACxBC=xy|xABy=C
13 1 12 eqtr4i xABC=xACxBC