Metamath Proof Explorer


Theorem climshft2

Description: A shifted function converges iff the original function converges. (Contributed by Paul Chapman, 21-Nov-2007) (Revised by Mario Carneiro, 6-Feb-2014)

Ref Expression
Hypotheses climshft2.1 Z=M
climshft2.2 φM
climshft2.3 φK
climshft2.5 φFW
climshft2.6 φGX
climshft2.7 φkZGk+K=Fk
Assertion climshft2 φFAGA

Proof

Step Hyp Ref Expression
1 climshft2.1 Z=M
2 climshft2.2 φM
3 climshft2.3 φK
4 climshft2.5 φFW
5 climshft2.6 φGX
6 climshft2.7 φkZGk+K=Fk
7 ovexd φGshiftKV
8 3 zcnd φK
9 eluzelz kMk
10 9 1 eleq2s kZk
11 10 zcnd kZk
12 fvex IGV
13 12 shftval4 KkIGshiftKk=IGK+k
14 8 11 13 syl2an φkZIGshiftKk=IGK+k
15 fvi GXIG=G
16 5 15 syl φIG=G
17 16 adantr φkZIG=G
18 17 oveq1d φkZIGshiftK=GshiftK
19 18 fveq1d φkZIGshiftKk=GshiftKk
20 addcom KkK+k=k+K
21 8 11 20 syl2an φkZK+k=k+K
22 17 21 fveq12d φkZIGK+k=Gk+K
23 14 19 22 3eqtr3d φkZGshiftKk=Gk+K
24 23 6 eqtrd φkZGshiftKk=Fk
25 1 7 4 2 24 climeq φGshiftKAFA
26 3 znegcld φK
27 climshft KGXGshiftKAGA
28 26 5 27 syl2anc φGshiftKAGA
29 25 28 bitr3d φFAGA