Metamath Proof Explorer


Theorem climshft

Description: A shifted function converges iff the original function converges. (Contributed by NM, 16-Aug-2005) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Assertion climshft MFVFshiftMAFA

Proof

Step Hyp Ref Expression
1 oveq1 f=FfshiftM=FshiftM
2 1 breq1d f=FfshiftMAFshiftMA
3 breq1 f=FfAFA
4 2 3 bibi12d f=FfshiftMAfAFshiftMAFA
5 4 imbi2d f=FMfshiftMAfAMFshiftMAFA
6 znegcl MM
7 ovex fshiftMV
8 7 climshftlem MfshiftMAfshiftMshift- MA
9 6 8 syl MfshiftMAfshiftMshift- MA
10 eqid M=M
11 ovexd MfshiftMshift- MV
12 vex fV
13 12 a1i MfV
14 id MM
15 zcn MM
16 eluzelcn kMk
17 12 shftcan1 MkfshiftMshift- Mk=fk
18 15 16 17 syl2an MkMfshiftMshift- Mk=fk
19 10 11 13 14 18 climeq MfshiftMshift- MAfA
20 9 19 sylibd MfshiftMAfA
21 12 climshftlem MfAfshiftMA
22 20 21 impbid MfshiftMAfA
23 5 22 vtoclg FVMFshiftMAFA
24 23 impcom MFVFshiftMAFA