Description: A shifted function converges iff the original function converges. (Contributed by NM, 16-Aug-2005) (Revised by Mario Carneiro, 31-Jan-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | climshft | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 | |
|
2 | 1 | breq1d | |
3 | breq1 | |
|
4 | 2 3 | bibi12d | |
5 | 4 | imbi2d | |
6 | znegcl | |
|
7 | ovex | |
|
8 | 7 | climshftlem | |
9 | 6 8 | syl | |
10 | eqid | |
|
11 | ovexd | |
|
12 | vex | |
|
13 | 12 | a1i | |
14 | id | |
|
15 | zcn | |
|
16 | eluzelcn | |
|
17 | 12 | shftcan1 | |
18 | 15 16 17 | syl2an | |
19 | 10 11 13 14 18 | climeq | |
20 | 9 19 | sylibd | |
21 | 12 | climshftlem | |
22 | 20 21 | impbid | |
23 | 5 22 | vtoclg | |
24 | 23 | impcom | |